
A Unified View on Graph Neural Networks
as Graph Signal Denoising

Yao Ma
yao.ma@njit.edu

New Jersey Institute of Technology
Newark, New Jersey, USA

Xiaorui Liu
xiaorui@msu.edu

Michigan State University
East Lansing, Michigan, USA

Tong Zhao
tzhao2@nd.edu

University of Notre Dame
Notre Dame, Indiana, USA

Yozen Liu
yliu2@snap.com

Snap Inc.
Santa Monica, California, USA

Jiliang Tang
tangjili@msu.edu

Michigan State University
East Lansing, Michigan, USA

Neil Shah
nshah@snap.com

Snap Inc.
Seattle, Washington, USA

ABSTRACT

Graph Neural Networks (GNNs) have risen to prominence in learn-
ing representations for graph structured data. A single GNN layer
typically consists of a feature transformation and a feature aggrega-
tion operation. The former normally uses feed-forward networks to
transform features, while the latter aggregates the transformed fea-
tures over the graph. Numerous recent works have proposed GNN
models with different designs in the aggregation operation. In this
work, we establish mathematically that the aggregation processes in
a group of representative GNN models including GCN, GAT, PPNP,
and APPNP can be regarded as (approximately) solving a graph de-
noising problemwith a smoothness assumption. Such a unified view
across GNNs not only provides a new perspective to understand a
variety of aggregation operations but also enables us to develop a
unified graph neural network framework Ugnn. To demonstrate its
promising potential, we instantiate a novel GNNmodel,Ada-Ugnn,
derived from Ugnn, to handle graphs with adaptive smoothness
across nodes. Comprehensive experiments show the effectiveness
of Ada-Ugnn. The implementation of ADA-UGNN is available at
https://github.com/alge24/ADA-UGNN.

CCS CONCEPTS

• Computing methodologies→ Supervised learning by classifi-
cation; Neural networks.

KEYWORDS

graph neural networks, graph signal denoising, semi-supervised
classification

ACM Reference Format:

Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah.
2021. A Unified View on Graph Neural Networks as Graph Signal Denoising.
In Proceedings of the 30th ACM International Conference on Information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482225

and Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event,
QLD, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3459637.3482225

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown great capacity in learn-
ing representations for graph-structured data and thus have facili-
tated many down-stream tasks such as node classification [12, 13,
23, 28] and graph classification [5, 29]. As traditional neural models,
a GNN model is usually composed of several stacking GNN layers.
Given a graph G with 𝑁 nodes, a GNN layer typically contains a
feature transformation and a feature aggregation operation as:

Feature Transformation: X′ = 𝑓𝑡𝑟𝑎𝑛𝑠 (X);
Feature Aggregation: H = 𝑓𝑎𝑔𝑔 (X′;G); (1)

where X ∈ R𝑁×𝑑𝑖𝑛 and H ∈ R𝑁×𝑑𝑜𝑢𝑡 denote the input and output
features of the GNN layer with 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 as the correspond-
ing dimensions, respectively. Similar to traditional neural models,
non-linear activation layers are commonly added between consec-
utive GNN layers. The feature transformation operation 𝑓𝑡𝑟𝑎𝑛𝑠 (·)
transforms the input of X to X′ ∈ R𝑁×𝑑𝑜𝑢𝑡 as its output, and the
feature aggregation operation 𝑓𝑎𝑔𝑔 (·;G) updates node features by
aggregating the transformed node features via the graph G.

In general, different GNN models share similar feature trans-
formations (often, a single feed-forward layer), while adopting
different designs for the aggregation operation. We raise a natural
question – is there an intrinsic connection among these feature
aggregation operations and their assumptions? The significance
of a positive answer to this question is two-fold. Firstly, it offers a
new perspective to create a uniform understanding on represen-
tative aggregation operations. Secondly, it enables us to develop
a general GNN framework that not only provides a unified view
on multiple existing representative GNN models, but also has the
potential to inspire new ones. In this paper, we aim to build the
connection among feature aggregation operations of representative
GNN models including GCN [12], GAT [23], PPNP and APPNP [13].
In particular, we mathematically establish that the aggregation op-
erations in these models can be unified as the process of exactly,
and sometimes approximately, addressing a graph signal denois-
ing problem with Laplacian regularization [21]. This connection
suggests that these aggregation operations share a unified goal:

https://github.com/alge24/ADA-UGNN
https://doi.org/10.1145/3459637.3482225
https://doi.org/10.1145/3459637.3482225
https://doi.org/10.1145/3459637.3482225

to ensure feature smoothness of connected nodes. With this un-
derstanding, we propose a general GNN framework, Ugnn, which
not only provides a straightforward, unified view for many exist-
ing aggregation operations, but also suggests various promising
directions to build new aggregation operations suitable for distinct
applications and graph properties. To demonstrate its potential, we
build an instance of Ugnn called Ada-Ugnn, which is suited for
handling varying smoothness properties across nodes, and conduct
experiments to show its effectiveness.

2 REPRESENTATIVE GRAPH NEURAL

NETWORKS

In this section, we introduce notations for graphs and briefly sum-
marize several representative GNNmodels. A graph can be denoted
as G = {V, E}, where V and E are its corresponding node and
edge sets. The connections in G can be represented as an adjacency
matrix A ∈ R𝑁×𝑁 , with 𝑁 the number of nodes in the graph. The
Laplacian matrix of the graph G is denoted as L. It is defined as
L = D − A, where D is a diagonal degree matrix corresponding to
A. There are also normalized versions of the Laplacian matrix such
as L = I −D−

1
2AD−

1
2 or L = I −D−1A. In this work, we sometimes

adopt different Laplacians to establish connections between differ-
ent GNNs and the graph denoising problem, clarifying in the text.
In the following, we generally use X ∈ R𝑁×𝑑𝑖𝑛 and H ∈ R𝑁×𝑑𝑜𝑢𝑡
to denote input and output features of GNN layers. X𝑖 and H𝑖 are
used to denote their corresponding 𝑖-th row, respectively. Next, we
describe a few representative GNN models.

2.1 Graph Convolutional Networks

Following (1), a single GCN layer [12] can be written as follows:

Feature Transformation: X′ = XW;

Feature Aggregation: H = ÃX′, (2)

whereW ∈ R𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 is a feature transformation matrix, and Ã is
a normalized adjacency matrix which includes a self-loop, defined
as follows:

Ã = D̂−
1
2 ÂD̂−

1
2 , with Â = A + I, (3)

where D̂ is the degree matrix corresponding to Â. In practice, mul-
tiple GCN layers can be stacked, where each layer takes the output
of its previous layer as input. Non-linear activation functions are
included between consecutive layers.

2.2 Graph Attention Networks

Graph Attention Networks (GAT) [23] adopts the same feature
transformation operation as GCN in Eq. (2). The feature aggregation
operation (written node-wise) for a node 𝑖 is as:

H𝑖 =
∑

𝑗 ∈Ñ (𝑖)
𝛼𝑖 𝑗X′𝑗 , with 𝛼𝑖 𝑗 =

exp
(
𝑒𝑖 𝑗

)∑
𝑘∈Ñ (𝑖)

exp (𝑒𝑖𝑘)
. (4)

where Ñ (𝑖) = N(𝑖) ∪ {𝑖} denotes 𝑖’s neighbors (self-inclusive),
and H𝑖 is the 𝑖-th row of H, i.e. the output features of node 𝑖 . In
this aggregation operation, 𝛼𝑖 𝑗 is a learnable attention score to

differentiate the importance of distinct nodes in the neighborhood.
Specifically, 𝛼𝑖 𝑗 is a normalized form of 𝑒𝑖 𝑗 , which is modeled as:

𝑒𝑖 𝑗 = LeakyReLU
([
X′𝑖 ∥X

′
𝑗

]
a
)

(5)

where [·∥·] denotes the concatenation operation and a ∈ R2𝑑 is a
learnable vector. Similar to GCN, a GAT model usually consists of
multiple stacked GAT layers.

2.3 Personalized Propagation of Neural

Predictions

Personalized Propagation of Neural Predictions (PPNP) [13] intro-
duces an aggregation operation based on Personalized PageRank
(PPR). Specifically, the PPR matrix is defined as 𝛼 (I − (1 − 𝛼)Ã)−1,
where 𝛼 ∈ (0, 1) is a hyper-parameter. The 𝑖 𝑗-th element of the PPR
matrix specifies the influence of node 𝑖 on node 𝑗 . The feature trans-
formation operation is modeled as Multi-layer Perception (MLP).
The PPNP model can be written in the form of Eq. (1) as follows:

Feature Transformation: X′𝑖𝑛 = MLP(X);
Feature Aggregation: H = 𝛼 (I − (1 − 𝛼)Ã)−1X′. (6)

Unlike GCN and GAT, PPNP only consists of a single feature ag-
gregation layer, but with a potentially deep feature transformation.
Since the matrix inverse in Eq. (6) is costly, Klicpera et al. [13] also
introduces a practical, approximated version of PPNP, called APPNP,
where the aggregation operation is performed in an iterative way
as:

H(𝑘) = (1 − 𝛼)ÃH(𝑘−1) + 𝛼X′ 𝑘 = 1, . . . 𝐾, (7)

where H(0) = X′ and H(𝐾) is the output of the feature aggrega-
tion operation. [13] shows that X(𝐾)𝑜𝑢𝑡 converges to the exact PPNP
solution in Eq. (6) as 𝐾 goes to infinity.

3 GNNS AS GRAPH SIGNAL DENOISING

In this section, we aim to establish the connections between the
introduced GNNmodels and a graph signal denoising problem with
Laplacian regularization.

Problem 1 (Graph Signal Denoising). Given a noisy signal S ∈
R𝑁×𝑑 on a graph G, the goals is to recover a clean signal F ∈ R𝑁×𝑑 ,
assumed to be smooth over G, by solving the following optimization
problem:

argmin
F
L = ∥F − S∥2𝐹 + 𝑐 · 𝑡𝑟 (F

⊤LF). (8)

The first term guides F to be close to S, while the second term
𝑡𝑟 (F⊤LF) is the Laplacian regularization which guides F’s smooth-
ness over G, with 𝑐 > 0’s mediation. Assuming that we adopt the
unnormalized version of Laplacian matrix with L = D − A (the
adjacency matrix A is assumed to be binary), the second term in
Eq. (8) can be written in an edge-centric way or a node-centric way
as:

edge-centric: 𝑐
∑
(𝑖, 𝑗) ∈E

F𝑖 − F𝑗 22 ; (9)

node-centric:
1
2
𝑐

∑
𝑖∈V

∑
𝑗 ∈Ñ (𝑖)

F𝑖 − F𝑗 22 . (10)

Clearly, from the edge-centric view, the regularization term mea-
sures the global smoothness of F, which is small when connected
nodes share similar features. On the other hand, from the node-
centric view, we can view the term

∑
𝑗 ∈Ñ (𝑖)

F𝑗 − F𝑗 22 as a local
smoothness measure for node 𝑖 as it measures the difference be-
tween node 𝑖 and all its neighbors. The regularization term can
then be regarded as a summation of local smoothness over all nodes.
Similar formulations can also be derived to other types of Laplacian
matrices. In the following subsections, we show connections be-
tween aggregation operations in various GNN models and Problem
1.

3.1 Connection to PPNP and APPNP

Our main results linking PPNP and APPNP’s to Eq. (8) are estab-
lished in Theorems 1 and 2, respectively.

Theorem 1. When we adopt the normalized Laplacian matrix
L = I− Ã, with Ã defined in Eq. (3), the feature aggregation operation
in PPNP (Eq. (6)) can be regarded as exactly solving Problem 1 with
X′ as the input noisy signal and 𝑐 = 1

𝛼 − 1.

Proof. Note that the objective in Eq. (8) is convex. Hence, the
closed-form solution F∗ of Problem (8) can be obtained by setting
its derivative to 0 as:

𝜕L
𝜕F

= 2(F − S) + 2𝑐LF = 0⇒ F∗ = (I + 𝑐L)−1S (11)

Given L = I − Ã, F∗ can be reformulated as:

F∗ = (I + 𝑐L)−1 S =

(
I + 𝑐

(
I − Ã

))−1
S

=
1

1 + 𝑐

(
I − 𝑐

1 + 𝑐 Ã
)−1

S (12)

The feature aggregation operation in Eq. (6) is equivalent to the
closed-form solution in Eq. (12) when we set 𝑐 = 1

𝛼 − 1 and S = X′.
This completes the proof. □

Theorem 2. When we adopt the normalized Laplacian matrix
L = I − Ã, the feature aggregation operation in APPNP (Eq. (7)) ap-
proximately solves the graph signal denoising problem (8) by iterative
gradient descent with X′ as the input noisy signal, 𝑐 = 1

𝛼 − 1 and
stepsize 𝑏 = 1

2+2𝑐 .

Proof. To solve the denoising problem in Eq. (8), we take itera-
tive gradient method with the stepsize 𝑏. Specifically, the 𝑘-th step
is as follows:

F(𝑘) ← F(𝑘−1) − 𝑏 · 𝜕L
𝜕F

����
F=F(𝑘−1)

= (1 − 2𝑏 − 2𝑏𝑐)F(𝑘−1) + 2𝑏S + 2𝑏𝑐ÃF(𝑘−1) (13)

where F(0) = S. When we set the stepsize 𝑏 as 1
2+2𝑐 , we have the

following iterative steps:

F(𝑘) ← 1
1 + 𝑐 S +

𝑐

1 + 𝑐 ÃF
(𝑘−1) , 𝑘 = 1, . . . 𝐾, (14)

which is equivalent to the iterative aggregation operation of the
APPNP in Eq. (7) with S = X′ and 𝑐 = 1

𝛼 − 1 . □

Algorithm 1: 𝐾-layer GCN As Graph Signal Denoising
input :Node Features X; Adjacency Matrix Â
output :Refined Node Features H

1 Initialize X(0) ← X, 𝑘 ← 1;
2 while 1 ≤ 𝑘 ≤ 𝐾 do

3 (Feature Transformation) X(𝑘−1)
𝑓

= X(𝑘−1)W(𝑘−1) ;

4 (Feature Aggregation) Let X(𝑘−1)
𝑓

be the input noisy signal of Eq. (8),
i.e., S = X𝑓 . Solve Problem (8) via one-step gradient descent as per
Theorem 3 and denote the solution as X(𝑘)𝑔 ;

5 (Activation) X(𝑘) = 𝜎 (X(𝑘)𝑔) , where 𝜎 (·) denotes an activation
function. ;

6 𝑘 ← 𝑘 + 1;
7 H = X(K) ;
8 return H

These two connections provide a new explanation on the hyper-
parameter 𝛼 in PPNP and APPNP from the graph signal denoising
perspective. Specifically, a smaller 𝛼 indicates a larger 𝑐 , which
means the obtained new featurematrixH is enforced to be smoother
over the graph.

3.2 Connection to GCN

Our main result is established in Theorem 3.

Theorem 3. When we adopt the normalized Laplacian matrix
L = I − Ã, the feature aggregation operation in GCN (Eq. (2)) can be
regarded as solving Problem 1 using one-step gradient descent with
X′ as the input noisy signal and stepsize 𝑏 = 1

2𝑐 .

Proof. The gradient with respect to F at S is 𝜕L
𝜕F

���
F=S

= 2𝑐LS.
Hence, one-step gradient descent for the graph signal denoising
problem (8) can be described as:

F← S − 𝑏 𝜕L
𝜕F

����
F=X

= S − 2𝑏𝑐LS

= (1 − 2𝑏𝑐)S + 2𝑏𝑐ÃS. (15)

When stepsize 𝑏 = 1
2𝑐 and S = X′, we have F← ÃX′, which is the

same as the aggregation operation of GCN. □

With this connection, it is easy to verify that a GCN model with
multiple GCN layers can be regarded as solving Problem 1 mul-
tiple times with different noisy signals as shown in Algorithm 1
(demonstrating for 𝐾-layer GCN). Specifically, in each layer, the ag-
gregation component aims to solve Problem 1 with the transformed
features as input noisy signal.

3.3 Connection to GAT

To establish the connection between graph signal denoising and
GAT [23], in this subsection, we adopt an unnormalized version of
the Laplacian, defined based on the adjacency matrix with self-loop
Â, i.e. L = D̂ − Â. Then, the denoising problem in Eq. (8) can be
rewritten from a node-centric view as:

argminF L =
∑
𝑖∈V
∥F𝑖 − S𝑖 ∥22 +

1
2

∑
𝑖∈V

𝑐
∑

𝑗 ∈Ñ (𝑖)

F𝑖 − F𝑗 22 , (16)

where Ñ (𝑖) = N(𝑖) ∪ {𝑖} denotes the neighbors (self-inclusive)
of node 𝑖 . In Eq. (16), the constant 𝑐 is shared by all nodes, which

indicates that the same level of local smoothness is enforced to all
nodes. By relaxing this assumption, instead of a unified 𝑐 as in
Eq. (16), we can consider a node-dependent 𝑐𝑖 for each node 𝑖:

argminF L =
∑
𝑖∈V
∥F𝑖 − S𝑖 ∥22 +

1
2

∑
𝑖∈V

𝑐𝑖
∑

𝑗 ∈Ñ (𝑖)

F𝑖 − F𝑗 22. (17)

We next show that the aggregation operation in GAT is closely
connected to an approximate solution of problem (17) with the help
of Theorem 4.

Theorem 4. With adaptive stepsize 𝑏𝑖 = 1/ ∑
𝑗 ∈Ñ (𝑖)

(𝑐𝑖 + 𝑐 𝑗) for

each node 𝑖 , the process of taking one step of gradient descent from S
to solve Eq. (17) is as follows:

F𝑖 ←
∑

𝑗 ∈Ñ (𝑖)
𝑏𝑖 (𝑐𝑖 + 𝑐 𝑗)S𝑗 . (18)

Proof. The gradient of Eq. (17) with respect to F focusing on a
node 𝑖 can be written as:

𝜕L
𝜕F𝑖

= 2 (F𝑖 − S𝑖) +
∑

𝑗 ∈Ñ (𝑖)

(
𝑐𝑖 + 𝑐 𝑗

) (
F𝑖 − F𝑗

)
, (19)

where 𝑐 𝑗 in the second term appears since 𝑖 is also in the neighbor-
hood of 𝑗 . Then, the gradient at S is 𝜕L

𝜕F𝑖

���
F=S

=
∑

𝑗∈Ñ (𝑖)

(
𝑐𝑖 + 𝑐 𝑗

) (
S𝑖 − S𝑗

)
.

Thus, one step of gradient descent starting from S with stepsize 𝑏𝑖
is as follows:

F𝑖 ← S𝑖 − 𝑏𝑖 ·
𝜕L
𝜕F𝑖

����
F=S

=

(
1 − 𝑏𝑖

∑
𝑗 ∈Ñ (𝑖)

(
𝑐𝑖 + 𝑐 𝑗

))
S𝑖 +

∑
𝑗 ∈Ñ (𝑖)

𝑏𝑖
(
𝑐𝑖 + 𝑐 𝑗

)
S𝑗 (20)

Given 𝑏𝑖 = 1/ ∑
𝑗 ∈Ñ (𝑖)

(𝑐𝑖 + 𝑐 𝑗), Eq. (20) can be rewritten as

F𝑖 ←
∑

𝑗 ∈Ñ (𝑖)
𝑏𝑖 (𝑐𝑖 + 𝑐 𝑗)S𝑗 ,

which completes the proof. □

Eq. (18) resembles the aggregation operation of GAT in Eq. (4)
if we treat 𝑏𝑖 (𝑐𝑖 + 𝑐 𝑗) as the attention score 𝛼𝑖 𝑗 . Note that we have∑
𝑗∈Ñ (𝑖)

(𝑐𝑖 + 𝑐 𝑗) = 1/𝑏𝑖 , for all 𝑖 ∈ V , so, (𝑐𝑖 + 𝑐 𝑗) can be regarded

as the unnormalized attention score and 𝑏𝑖 as the normalization
constant. We further compare 𝑏𝑖 (𝑐𝑖 + 𝑐 𝑗) with 𝛼𝑖 𝑗 by investigating
the formulation of 𝑒𝑖 𝑗 in Eq. (5). Eq. (5) can be rewritten as:

𝑒𝑖 𝑗 = LeakyReLU (X′𝑖a1 + X
′
𝑗a2), (21)

where a1 ∈ R𝑑 and a2 ∈ R𝑑 are learnable column vectors, which
can be concatenated to form a in Eq. (5). Comparing 𝑒𝑖 𝑗 with (𝑐𝑖+𝑐 𝑗),
we find that they take a similar form. Specifically, X′

𝑖
a1 and X′

𝑗
a2

can be regarded as the approximations of 𝑐𝑖 and 𝑐 𝑗 , respectively. In
this way, 𝑒𝑖 𝑗 can be considered as a learnable function estimating
𝑐𝑖 + 𝑐 𝑗 . Correspondingly, 𝑏𝑖 (𝑐𝑖 + 𝑐 𝑗) and 𝛼𝑖 𝑗 are the normalized
versions of 𝑐𝑖 + 𝑐 𝑗 and 𝑒𝑖 𝑗 , respectively. The difference between
𝑏𝑖 (𝑐𝑖 +𝑐 𝑗) and 𝛼𝑖 𝑗 is that the normalization in Eq. (18) for 𝑏𝑖 (𝑐𝑖 +𝑐 𝑗)
is achieved via summation rather than a softmax as Eq. (4) for
𝛼𝑖 𝑗 . Since GAT makes the 𝑐𝑖 and 𝑐 𝑗 learnable, they also include
a non-linear activation in calculating 𝑒𝑖 𝑗 . Note that similarly to

multi-layer GCN illustrated in Algorithm 1, multi-layer GAT can
be also regarded as solving a series of graph denoising problems in
Eq. (17).

4 UGNN: A UNIFIED GNN FRAMEWORK VIA

GRAPH SIGNAL DENOISING

In the previous section, we established that the aggregation opera-
tions in PPNP, APPNP, GCN and GAT are intimately connected to
the graph signal denoising problem with (generalized) Laplacian
regularization (Problem 1). In particular, all their aggregation opera-
tions aim to ensure feature smoothness: either a global smoothness
over the graph as in PPNP, APPNP and GCN, or a local smoothness
for each node as in GAT. This understanding allows us to develop
a unified aggregation operation via the following, more general
denoising problem:

Problem 2 (Generalized Graph Signal Denoising Problem).

argmin
F
L = ∥F − S∥2𝐹 + 𝑟 (C, F,G), (22)

where 𝑟 (C, F,G) denotes a flexible regularization term to enforce
some prior of F encoded by G.

Note that we overload the notation C here: it can function as a
scalar (like a global constant in GCN), a vector (like node-wise con-
stants in GAT) or even a matrix (edge-wise constants) if we want to
give flexibility to each node pair. Different choices of 𝑟 (·) imply dif-
ferent feature aggregation operations. Besides PPNP, APPNP, GCN
and GAT, there are aggregation operations in more GNN models
that can be associated with Problem 2 with different regularization
terms such as PairNorm [30] and DropEdge [17]. These two re-
cently proposed enhancements for developing deeper GNN models
correspond to the following choices for 𝑟 (C, F,G):

PairNorm:
∑
(𝑖, 𝑗) ∈E

C𝑝 ·
F𝑖 − F𝑗 22 − ∑

(𝑖, 𝑗)∉E
C𝑛 ·

F𝑖 − F𝑗 22 ,
DropEdge:

∑
(𝑖, 𝑗) ∈E

C𝑖 𝑗 ·
F𝑖 − F𝑗 22 , where C𝑖 𝑗 ∈ {0, 1}.

For PairNorm, C consists of C𝑝 , C𝑛 > 0 and the regularization term
ensures connected nodes to be similar while disconnected nodes to
be dissimilar. For DropEdge, C is a sparse matrix having the same
shape as the adjacency matrix. For each edge (𝑖, 𝑗), its correspond-
ing C𝑖 𝑗 is sampled from a Bernoulli distribution with mean 1 − 𝑞,
where 𝑞 is a pre-defined dropout rate. The above mentioned regular-
ization terms are all related to the Laplacian regularization. Other
regularization terms can also be adopted, which may lead to novel
designs of GNN layers. For example, if we aim to enforce piece-wise
linearity in the clean signal, we can adopt 𝑟 (C, F,G) = C · ∥LF∥1
designed for trend filtering [22, 24].

With these discussions, we propose a unified framework (Ugnn)
to design GNN layers from the graph signal processing perspec-
tive: 1) Design a graph regularization term 𝑟 (C, F,G) in Problem
2 according to specific applications; 2) Feature Transformation:
X′ = 𝑓𝑡𝑟𝑎𝑛𝑠 (X); and 3) Feature Aggregation: Solve Problem 2 with
S = X′ and the designed 𝑟 (C, F,G). To demonstrate the potential of

Ugnn, we next introduce a new GNN model, Ada-Ugnn by instan-
tiating Ugnn with 𝑟 (C, F,G) enforcing adaptive local smoothness
across nodes.

5 ADA-UGNN: ADAPTIVE LOCAL

SMOOTHINGWITH UGNN

From the graph signal denoising perspective, PPNP, APPNP, and
GCN enforces global smoothness by penalizing the difference with
a constant C for all nodes. However, real-world graphs may consist
of multiple groups of nodes which have different behaviors in con-
necting to similar neighbors. For example, Section 6.1 shows several
graphs with varying distributions of local smoothness (as measured
by label homophily): summarily, not all nodes are highly label-
homophilic, and some nodes have considerably “noisier” neighbor-
hoods than others. Moreover, as suggested by Jin et al. [11], Wu
et al. [25], adversarial attacks on graphs tend to promote such label
noise in graphs by connecting nodes from different classes and dis-
connecting nodes from the same class, rendering resultant graphs
with varying local smoothness across nodes. Under these scenar-
ios, a constant C might not be optimal, suggesting the value of
adaptive (i.e. non-constant) smoothness assumptions. As shown in
Section 3.3, by viewing GAT’s aggregation as a solution to regu-
larized graph signal denoising, GAT can be regarded as adopting
an adaptive C for different nodes, which facilitates adaptive lo-
cal smoothness. However, in GAT, the graph denoising problem
is solved by a single step of gradient descent, which might still
be suboptimal. Furthermore, when modeling the local smoothness
factor 𝑐𝑖 in Eq. (18), GAT only uses features of node 𝑖 as input,
which may not be optimal since intuitively, understanding 𝑐𝑖 as
local smoothness, it should be intrinsically related to 𝑖’s neighbor-
hood. In this section, we adapt this notion directly into the Ugnn
framework by introducing a new regularization term, and develop a
resulting GNN model (Ada-Ugnn) which aims to enforce adaptive
local smoothness to nodes in a different manner to GAT. We then
utilize an iterative gradient descent method to approximate the
optimal solution for Problem 2 with the following regularization
term:

𝑟 (C, F,G) = 1
2

∑
𝑖∈V
C𝑖

∑
𝑗 ∈Ñ (𝑖)

 F𝑖√
𝑑𝑖
−

F𝑗√
𝑑 𝑗
.

2
2

(23)

where 𝑑𝑖 , 𝑑 𝑗 denote the degree of nodes 𝑖 and 𝑗 respectively, and
C𝑖 indicates the smoothness factor of node 𝑖 , which is assumed to
be a fixed scalar. Note that, the above regularization term can be
regarded as a generalized version of the regularization term used
in PPNP, APPNP, and GCN. Similar to PPNP and APPNP, Ada-
Ugnn only consists of a single GNN layer. We next describe the
feature transformation and aggregation operations of Ada-Ugnn,
and show how to derive the model via Ugnn.

5.1 Feature Transformation

Similar to PPNP and APPNP, we adopt MLP for the feature trans-
formation. Specifically, for a node classification task, the dimension
of the output of the feature transformation X′ is the number of
classes in the graph.

5.2 Feature Aggregation

We use iterative gradient descent to solve Problem 2 with the regu-
larization term in Eq. (23). The iterative gradient descent steps are
stated in the following theorem.

Theorem 5. With adaptive stepsize 𝑏𝑖 = 1/
(
2 + ∑

𝑗∈Ñ (𝑖)
(C𝑖 + C𝑗)/𝑑𝑖

)
for each node 𝑖 , the iterative gradient descent steps to solve Problem 2
with the regularization term in Eq. (23) is as follows:

F(𝑘)
𝑖
← 2𝑏S𝑖 + 𝑏𝑖

∑
𝑗 ∈Ñ (𝑖)

(C𝑖 + C𝑖)
F(𝑘−1)
𝑗√
𝑑𝑖𝑑 𝑗

; 𝑘 = 1, . . . , (24)

where F(0)
𝑖

= S𝑖 .

Proof. The gradient of the optimization problem 2 with the
regularization term in Eq. (23) with respect to F (focusing on node
𝑖) is as follows:

𝜕L
𝜕F𝑖

= 2(F𝑖 − S𝑖) +
∑

𝑣𝑗 ∈Ñ (𝑣𝑖)

C𝑖 + C𝑗√
𝑑𝑖

(
F𝑖√
𝑑𝑖
−

F𝑗√
𝑑 𝑗

)
, (25)

where C𝑗 in the second term appears since node 𝑖 is also in the
neighborhood of node 𝑗 . The iterative gradient descent steps with
adaptive stepsize 𝑏𝑖 can be formulated as follows:

F(𝑘)
𝑖
← F(𝑘−1)

𝑖
− 𝑏𝑖 ·

𝜕L
𝜕F𝑖

����
F𝑖=F

(𝑘−1)
𝑖

; 𝑘 = 1, . . . (26)

With the gradient in Eq. (25), the iterative steps in Eq. (26) can be
rewritten as:

F(𝑘)
𝑖
←(1 − 2𝑏𝑖 − 𝑏𝑖

∑
𝑣𝑗 ∈Ñ (𝑣𝑖)

C𝑖 + C𝑗
𝑑𝑖

)F(𝑘−1)
𝑖

+ 2𝑏𝑖S𝑖

+ 𝑏𝑖
∑

𝑣𝑗 ∈Ñ (𝑣𝑖)
(C𝑖 + C𝑗)

F(𝑘−1)
𝑗√
𝑑𝑖𝑑 𝑗

; 𝑘 = 1, . . . (27)

Given 𝑏𝑖 = 1/©«2 + ∑
𝑣𝑗 ∈Ñ (𝑣𝑖)

(C𝑖 + C𝑗)/𝑑𝑖
ª®¬, the iterative steps in

Eq. (27) can be re-written as follows:

F(𝑘)
𝑖
← 2𝑏𝑖S𝑖 + 𝑏𝑖

∑
𝑣𝑗 ∈Ñ (𝑣𝑖)

(C𝑖 + C𝑗)
F(𝑘−1)
𝑗√
𝑑𝑖𝑑 𝑗

; 𝑘 = 1, . . . , (28)

with F(0)
𝑖

= S𝑖 , which completes the proof. □

Following the iterative solution in Eq. (24), we model the aggre-
gation operation (for node 𝑖) for Ada-Ugnn as:

H(𝑘)
𝑖
← 2𝑏𝑖X′𝑖 + 𝑏𝑖

∑
𝑣𝑗 ∈Ñ (𝑣𝑖)

(C𝑖 + C𝑗)
H(𝑘−1)

𝑗√
𝑑𝑖𝑑 𝑗

; 𝑘 = 1, . . . 𝐾, (29)

whereX′ is the output of feature transformation,H(0) = X′,𝐾 is the
number gradient descent iterations, C𝑖 can be considered as a posi-
tive scalar to control the level of “local smoothness” for node 𝑖 , and

𝑏𝑖 can be calculated from {C𝑗 | 𝑗 ∈ Ñ (𝑖)} as𝑏𝑖 = 1/
(
2 + ∑

𝑗∈Ñ (𝑖)
(C𝑖 + C𝑗)/𝑑𝑖

)
.

However, in practice, C𝑖 is usually unknown. One possible solu-
tion is to treat C𝑖 as hyper-parameters. But, treating C𝑖 as hyper-
parameters for all nodes is impractical, since there are in total 𝑁 of
them and we do not have their prior knowledge. Thus, we instead
parameterize C𝑖 as a function of the information of the neighbor-
hood of node 𝑖 as follows:

C𝑖 = 𝑠 · 𝜎
(
ℎ1

(
ℎ2

({
X′𝑗 | 𝑗 ∈ Ñ (𝑖)

})))
, (30)

where ℎ2 (·) is a function to transform the neighborhood informa-
tion of node 𝑖 to a vector, while ℎ1 (·) further transforms it to a
scalar. 𝜎 (·) denotes the sigmoid function, which maps the output
scalar from ℎ1 (·) to (0, 1) and 𝑠 can be treated as a hyper-parameter
controlling the upper bound of C𝑖 . ℎ1 (·) can be modeled as a single
layer fully-connected neural network. There are different designs
for ℎ2 (·) such as channel-wise mean or variance [4]. In this paper,
we adopt channel-wise variance as the ℎ2 (·) function (as a measure
of diversity). APPNP can be regarded a special case of Ada-Ugnn,
where 𝜎

(
ℎ1

(
ℎ2

({
X′
𝑗
| 𝑗 ∈ Ñ (𝑖)

})))
produces a constant 1 (i.e, C𝑖 = 𝑠) for

all nodes. For the node classification task, the representation H(𝐾) ,
which is obtained after𝐾 iterations as in Eq. (29), is directly softmax
normalized row-wisely and its 𝑖-th row indicates the discrete class
distribution of node 𝑖 .

6 EXPERIMENTAL EVALUATION

Although our contributions in this work are primarily towards
mathematical understanding and unification of GNNs, in this sec-
tion, we experimentally evaluate our proposedAda-Ugnn to demon-
strate the promise of deriving new aggregations as solutions of
denoising problems (not in striving for state-of-the-art GNN perfor-
mance). We begin with node classification experiments on standard
graphs. Next, we demonstrate the effectiveness of the proposed
Ada-Ugnn in handling adaptive smoothness as manifested via ad-
versarial attacks.

6.1 Node Classification

We first introduce the datasets and experimental settings in Sec-
tion 6.1.1 and then present the results in Section 6.1.2.

6.1.1 Datasets and Experimental Settings. Datasets. We use 10
datasets from various domains including citation, social, co-authorship
and co-purchase networks. Specifically, we use three citation net-
works including Cora, Citeseer, and Pubmed [18]; two social net-
works including BlogCatalog and Flickr [10]; two co-authorship
networks including Coauthor-CS and Coauthor-PH [20]; one
transportation network, Air-USA [26]; and two co-purchase net-
works including Amazon-Comp and Amazon Photos [20]. We pro-
vided detailed description of these datasets as follows.
• CitationNetworks:Cora,Citeseer and Pubmed arewidely
adopted benchmarks of GNN models. In these graphs, nodes
represent documents and edges denote the citation links be-
tween them. Each node is associated bag-of-words features
of its corresponding document and also a label indicating
the research field of the document.
• Co-purchase Graph: Amazon-Comp and Amazon-Photo
are co-purchase graphs, where nodes represent items and
edges indicate that two items are frequently bought together.
Each item is associated with bag-of-words features extract

#Nodes #Edges #Labels #Features

Cora 2708 13264 7 1433
Citeseer 3327 12431 6 3703
Pubmed 19717 108365 3 500

Amazon-Comp 13381 504937 10 767
Amazon-Photo 7487 245573 8 745
Coauthor-CS 18333 182121 15 6805
Coauthor-PH 34493 530417 5 8415
BlogCatalog 5196 348682 6 8189

Flickr 7575 487051 9 12047
Air-USA 1190 28388 4 238

Table 1: Dataset summary statistics.

from its corresponding reviews. The labels of items are given
by the category of them.
• Co-authorship Graphs: Coauthor-CS and Coauthor-
PH are co-authorship graphs, where nodes are authors and
edges indicating the co-authorship between authors. Each
author is associated with some features representing the
keywords of his/her papers. The label of an author indicates
the his/her most active research field.
• Blogcatalog: BlogCatalog is an online blogging commu-
nity where bloggers can follow each other. The BlogCat-
alog graph consists of blogger as nodes while their social
relations as edges. Each blogger is associated with some
features generated from key words of his/her blogs. The
bloggers are labeled according to their interests.
• Flickr: Flickr is an image sharing platform. The Flickr
graph consists users as its nodes and the following relation
among users as its edges. The users are labeled with the
groups they joined.
• Air-USA: Air-USA is a air traffic graph, where each node is
an airport in the US. Two nodes are considered as connected
if there existing commercial flights between them. Nodes are
labeled with the the passenger flow of each airport.

Some statistics about these datasets can be found in Table 1. To
provide a sense of the local smoothness properties of these datasets,
in addition to the summary statistics, we also illustrate the local label
smoothness distributions in Figure 1: here, we define the local label
smoothness of a node as the ratio of nodes in its neighborhood that
share the same label with it. Specifically, for a node 𝑣𝑖 we formally
define the local label smoothness as follows

ls(𝑖) =

∑
𝑗 ∈N(𝑖)

1{𝑙 (𝑖) = 𝑙 (𝑗)}

|N (𝑖) | (31)

where 𝑙 (𝑣𝑖) denotes the label of node 𝑣𝑖 and 1{𝑎} is an indicator
function, which takes 1 as output only when 𝑎 is true, otherwise 0.
Notably, as shown in Figure 1, the large variety in local label smooth-
ness within several real-world datasets including BlogCatalog,
Flickr and Air-USA– also observed in [19] – clearly motivates the
importance of the adaptive smoothness assumption in Ada-Ugnn.

Experimental Settings. For the citation networks, we use the
standard split as provided in Kipf and Welling [12], Yang et al. [27].
For BlogCatalog, Flickr and Air-USA, we adopt the split pro-
vided in Zhao et al. [31]. For the citation networks, social networks

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

250

500

750

1000

1250

1500

1750

#n
od

es

(a) Cora

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0
250
500
750

1000
1250
1500
1750
2000

#n
od

es

(b) Citeseer

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

2000

4000

6000

8000

10000

12000

#n
od

es

(c) Pubmed

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

200

400

600

800

1000

#n
od

es

(d) BlogCatalog

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0
250
500
750

1000
1250
1500
1750
2000

#n
od

es

(e) Flickr

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

1000

2000

3000

4000

5000

6000

#n
od

es

(f) Amazon-Comp

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

1000

2000

3000

4000

#n
od

es

(g) Amazon-Photo

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

2000

4000

6000

8000

10000

#n
od

es

(h) Coauthor-CS

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

5000

10000

15000

20000

25000

#n
od

es

(i) Coauthor-PH

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

100

200

300

400

#n
od

es

(j) Air-USA

Figure 1: Distribution of local label smoothness (homophily) on different graph datasets: note the non-homogeneity of smooth-

ness values.

Table 2: Node classification accuracy across datasets.

Accuracy (%) GCN GAT APPNP Ada-Ugnn

Cora 81.75±0.8 82.56±0.8 84.49±0.6 84.79±0.7*
Citeseer 70.13±1.0 70.77±0.8 71.97±0.6 72.17±0.6
Pubmed 78.56±0.5 78.88±0.5 80.00±0.4 80.52±0.6***
Amazon-Comp 82.79±1.3 83.01±1.5 82.99±1.6 83.40±1.3***
Amazon-Photo 89.60±1.5 90.33±1.2 91.38±1.2 91.44±1.2
Coauthor-CS 91.55±0.6 90.95±0.7 91.69±0.4 92.33±0.5***
Coauthor-PH 93.23±0.7 92.86±0.7 93.84±0.5 93.92±0.6
BlogCatalog 71.38±2.7 72.90±1.2 92.43±0.9 93.33±0.3***
Flickr 63.28± 0.3 52.17±1.0 83.19±0.4 84.15±0.4***
Air-USA 56.62± 1.1 55.81± 1.7 56.20±1.2 57.32±1.2***

∗, ∗∗∗ indicate the improvement over APPNP is significant at 𝑝 < 0.1 and 0.005

and transportation network, we report results averaged across 30
random seeds. For co-authorship and co-purchase networks, we
utilize 20 labels per class for training, 30 nodes per class for valida-
tion and the remaining nodes for test. This process is repeated 20
times, which results in 20 different training/validation/test splits.
For each split, the experiment is repeated for 20 times with dif-
ferent initialization. The average results over 20 × 20 experiments
are reported. We compare our methods with the methods intro-
duced in Section 2 including GCN, GAT and APPNP (we do not
include PPNP due to scaling difficulty given the matrix inverse in
Eq. (6)). For all methods, we tune the hyperparameters from the
following options: 1) learning rate: {0.005, 0.01, 0.05}; 2) weight
decay {5𝑒−04, 5𝑒−05, 5𝑒−06, 5𝑒−07, 5𝑒−08}; and 3) dropout rate:
{0.2, 0.5, 0.8}. For APPNP and our method Ada-Ugnn, we further
tune the number of iterations 𝐾 and the upper bound 𝑠 for 𝑐𝑖 in
Eq. (30) from the following range: 1)𝐾 : {2, 5, 10}; and 𝑠 : {1, 9, 19, 29}.
Note that we treat APPNP as a special case of our proposed method
with C𝑖 = 𝑠 in Eq. (30).

6.1.2 Performance Comparison. We show results in Table 2, using
two-sample 𝑡-test to evaluate significance. We note a few main
observations: 1) GAT outperforms GCN in most datasets, indicating
that modeling adaptive local smoothness is generally helpful; 2)
APPNP/Ada-Ugnn outperform GCN/GAT in most settings, sug-
gesting iterative gradient descent offers advantages to single-step
gradients, due to improved ability to achieve a denoising solution
closer to the optimal; and 3) Most notably, our proposed Ada-Ugnn
achieves consistently better performance than GCN/GAT, and out-
performs or matches APPNP across datasets. Outperformance of
GAT suggests the importance of considering neighborhood informa-
tion in learning local smoothness, while outperformance of APPNP
suggests that adaptive local smoothness is advantaged versus fixed
smoothness assumptions.

We note that APPNP is the closest contending method. However,
our reported averaged results consistently outperform it, and espe-
cially so on datasets where the the local label smoothness varies a
lot across nodes, like BlogCatalog, Flickr, and Air-USA. In addi-
tion to these datasets, Ada-Ugnn also achieves strongly significant
improvements (𝑝 < 0.005) over APPNP on some datasets with lesser
label smoothness diversity like Coauthor-CS, Amazon-Comp and
Pubmed, and less significant improvements (𝑝 < 0.1) onCora. Com-
paratively, for datasets with extremely skewed local label smooth-
ness distributions, where the majority of nodes have perfect, 1.0
label homophily (see Figure 1) like Amazon-Photo, Coauthor-
PH, and Citeseer, improvement over APPNP is marginal. APPNP
shines in such cases, since its assumption of 𝜎

(
ℎ1

(
ℎ2

({
X′
𝑗
| 𝑗 ∈ Ñ (𝑖)

})))
= 1

is ideal for these nodes (designating maximal local smoothness).
Conversely, our model has the challenging task of learning ℎ1 (·)
and ℎ2 (·) – in such skewed cases, learning these functions may be
relatively unfruitful, but still achieves strong performance. Over-
all, Ada-Ugnn can work well no matter whether the given graph

Table 3: Node classification accuracy, split across nodes with

low/high local label smoothness.

Accuracy (%) Low High

APPNP ADA-UGNN APPNP ADA-UGNN
Cora 38.40 40.17 90.65 90.76

Citeseer 34.20 34.83 82.00 81.90
Pubmed 41.08 44.44 88.32 88.33

Amazon-Comp 44.08 45.81 88.08 88.31
Amazon-Photo 44.57 44.94 95.61 95.54
Coauthor-CS 43.94 51.79 96.31 96.26
Coauthor-PH 37.97 43.24 96.10 95.98
BlogCatalog 89.70 91.15 99.49 99.06

Flickr 81.83 82.95 96.63 96.04
Air-USA 42.44 43.62 77.03 78.01

has a skewed or diverse local label smoothness distribution, but
especially shines when the local label smoothness is diverse.

6.1.3 Performance vs. Local Label Smoothness. To further investi-
gate how Ada-Ugnnworks, we partition the nodes in the test set of
each dataset into two groups: (1) high smoothness: those with local
label smoothness >0.5, and (2) low smoothness: those with ≤0.5, and
evaluate accuracy for APPNP and the proposed Ada-Ugnn for each
group. The results for all datasets are shown in Table 3. Clearly, the
proposed Ada-Ugnn consistently improves the performance for
low-smoothness nodes in most datasets, while keeping comparable
performance for high-smoothness nodes. Hence, for graphs where
many nodes have low-level smoothness (like BlogCatalog, Flickr
orAir-USA),Ada-Ugnn outperforms APPNP significantly in terms
of overall performance. However, for graphs with very few low-
smoothness nodes such as Coauthor-PH, though Ada-Ugnn still
significantly improves the performance over APPNP for those low
smoothness nodes, the overall performance is similar to APPNP.

6.2 Robustness Under Adversarial Attacks

Adversarial attacks on graphs tend to connect nodes from differ-
ent classes and remove edges between nodes from the same class
[11, 25], producing graphs with varying local label smoothness
after attack. To further demonstrate that Ada-Ugnn can handle
graphs with varying local label smoothness better than alternatives,
we conduct experiments to show its robustness under adversarial
attacks. Specifically, we adopt Mettack [33] to perform the attacks.
We utilize the attacked graphs (5%-25% perturb rate) from Jin et al.
[11] and follow the same setting, i.e. report average performance
of each method over 10 random seeds. These attacked graphs are
generated from Cora, Citeseer and Pubmed. As per prior work,
we use only the largest connected component in each graph, and fix
a 10/10/80 training, validation and test split. Hence, the results in
this section are not comparable with those in the previous section.
We present the local smoothness distributions of the graphs gener-
ated by Mettack [33] with different perturbation rate for Cora in
Figure 2. The change in local smoothness distributions for Citeseer
and Pubmed dataset are similar to Cora. We compare Ada-Ugnn
with GCN, GAT and APPNP. Results under varying perturbation
rates (attack intensities) are shown in Figure 3, with Ada-Ugnn in
orange. We have the following observations: 1) Ada-Ugnn is more

stable than all three baselines, with the most graceful performance
degradation under attack; and 2) Ada-Ugnn (orange) substantially
outperforms APPNP by a large margin, especially in scenarios with
high perturbation rate.

These results further demonstrate that Ada-Ugnn can handle
graphs with varying local label smoothness better than alternatives.
Note that compared to the next-best contender (APPNP),Ada-Ugnn
only introduces a constant number of additional parameters for
modeling ℎ1 (·) in Eq. (30). Although Ada-Ugnn is not specifically
designed to defend against adversarial attacks (and we do not claim
it is the most suitable).

6.2.1 Learning Smoothness under Attack. We investigate how Ada-
Ugnn learns adaptive C𝑖 under different attack perturbation ratios.
Ideally, for nodes with high local label smoothness, we expect the
learned C𝑖 to be larger, such that a higher-level local smoothness
is enforced to this node during model training. We consider the
Pearson correlation between the learned C𝑖 for all nodes with their
local label smoothness (unknown during training). The correlation
coefficients for the three datasets under various perturbation ra-
tios are shown in Figure 4. In general, the learned C𝑖 are strongly
positively correlated with the local label smoothness under all set-
tings on all three datasets. Moreover, compared with the clean
graph (0% perturbation), the correlation scores are generally higher
when the graphs are increasingly perturbed. This is likely because
all the three datasets have highly skewed local label smoothness
distributions as discussed in Section 6.1.2. Under perturbation, the
label smoothness distributions of these three datasets become much
more diverse (see Figure 2 for a demonstration), which facilitates
Ada-Ugnn to learn better C𝑖 . These findings are consistent with our
original conjecture in Section 6.1.2. This also partially explains why
Ada-Ugnn strongly outperforms APPNP under the attack setting
on these datasets, compared to marginal outperformance under the
clean graph setting.

7 RELATEDWORKS

There are mainly two streams of work in designing GNNmodels, i.e,
spectral-based and spatial-based. When designing spectral-based
GNNs, graph convolution [21], defined based on spectral theory, is
utilized to design GNN layers together with the feature transforma-
tion [1, 5, 9]. These spectral-based graph convolutions are tightly
related with graph signal processing, and they can be regarded
as graph filters. Low-pass graph filters can usually be adopted to
denoise graph signals [3]. In fact, most algorithms discussed in our
work can be regarded as low-pass graph filters. With the emer-
gence of GCN [12], which can be regarded as a spectral-based and
also a spatial-based graph convolution operator, numerous spatial-
based GNNmodels have since been developed [6–8, 15, 23]. A more
comprehensive introduction on GNNs can be found at [14].

Graph signal denoising aims to infer a clean graph signal given
a noisy one, and can be usually formulated as a graph regularized
optimization problem [3]. Recently, several works connect GCN
with graph signal denoising with Laplacian regularization [16, 30],
finding the aggregation process in GCN models can be regarded as
a first-order approximation of the optimal solution. On the other
hand, GNNs are also utilized to develop novel algorithms for graph

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0
200
400
600
800

1000
1200
1400
1600

#n
od

es

(a) 0%

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

200

400

600

800

1000

1200

1400

#n
od

es
(b) 5%

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0

200

400

600

800

1000

#n
od

es

(c) 15%

0.0 0.2 0.4 0.6 0.8 1.0
Local Label Smoothness

0
100
200
300
400
500
600
700
800

#n
od

es

(d) 25%

Figure 2: Distribution of local label smoothness on Cora with various attack perturbation rates.

0% 5% 10% 15% 20% 25%
Perturbation Rate(%)

50
55
60
65
70
75
80
85

Te
st

 A
cc

ur
ac

y(
%

)

APPNP
ADA-UGNN
GCN
GAT

(a) Cora

0% 5% 10% 15% 20% 25%
Perturbation Rate(%)

57.5
60.0
62.5
65.0
67.5
70.0
72.5
75.0

Te
st

 A
cc

ur
ac

y(
%

)

APPNP
ADA-UGNN
GCN
GAT

(b) Citeseer

0% 5% 10% 15% 20% 25%
Perturbation Rate(%)

76
78
80
82
84
86
88

Te
st

 A
cc

ur
ac

y(
%

)

APPNP
ADA-UGNN
GCN
GAT

(c) Pubmed

Figure 3: Node classification accuracy under adversarial attacks. The proposed Ada-Ugnn maintains consistently strong per-

formance even under high attack scale via its adaptive smoothness assumptions, where other methods degrade more quickly.

0% 5% 10% 15% 20% 25%
Perturbation Rate(%)

0.40
0.45
0.50
0.55
0.60

Co
rre

la
tio

n

CORA
CITESEER
PUBMED

Figure 4: Correlation betweenAda-Ugnn’s learned C𝑖 scores
and local label smoothness.

denoising [2]. Unlike these works, our paper details how a fam-
ily of GNN models can be unified with a graph signal denoising
perspective, and shows its promise for new architecture design.

We noticed that one concurrent work very recently released to
arXiv [32], which finds optimization commonalities between some
GNN models. However, we approach our unified framework with
signal denoising, which provides a better explanation of the frame-
work and offers a new perspective. Furthermore, our observation
of the adaptive local smoothness allows us to unify GAT into our
framework, and propose a new GNN model Ada-Ugnn.

8 CONCLUSION

In this paper, we show how various representative GNN models
including GCN, PPNP, APPNP and GAT can be unified mathemati-
cally as natural instances of graph denoising problems. Specifically,
the aggregation operations in these models can be regarded as ex-
actly or approximately addressing such denoising problems. With
these observations, we propose a general framework, Ugnn, which
enables the development of novel and flexible GNNmodels from the
denoising perspective via regularizer design. As an example demon-
strating the promise of this paradigm, we instantiate the Ugnn
framework with a regularizer addressing adaptive local smoothness
across nodes, and proposed and evaluated a suitable new GNN
model, Ada-Ugnn.

ACKNOWLEDGEMENTS

This research is supported by the National Science Foundation
(NSF) under grant numbers IIS1714741, CNS1815636, IIS1845081,
IIS1907704, DRL2025244, IIS1928278, IIS1955285, IOS2107215, IOS2035472,
Army Research Office (ARO) under grant number W911NF-21-1-
0198, and a grant from Snap Inc.

REFERENCES

[1] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[2] Siheng Chen, Yonina C Eldar, and Lingxiao Zhao. 2020. Graph Unrolling Net-
works: Interpretable Neural Networks for Graph Signal Denoising. arXiv preprint
arXiv:2006.01301 (2020).

[3] Siheng Chen, Aliaksei Sandryhaila, José MF Moura, and Jelena Kovacevic. 2014.
Signal denoising on graphs via graph filtering. In 2014 IEEE Global Conference on
Signal and Information Processing (GlobalSIP). IEEE, 872–876.

[4] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković.
2020. Principal neighbourhood aggregation for graph nets. arXiv preprint
arXiv:2004.05718 (2020).

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. InAdvances
in neural information processing systems. 3844–3852.

[6] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learnable
graph convolutional networks. In Proceedings of the 24th ACM SIGKDD. 1416–
1424.

[7] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212 (2017).

[8] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS. 1024–1034.

[9] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

[10] Xiao Huang, Jundong Li, and Xia Hu. 2017. Label informed attributed network
embedding. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining. 731–739.

[11] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph Structure Learning for Robust Graph Neural Networks. arXiv
preprint arXiv:2005.10203 (2020).

[12] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[13] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[14] Yao Ma and Jiliang Tang. 2021. Deep learning on graphs. Cambridge University
Press.

[15] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
andMichael M Bronstein. 2017. Geometric deep learning on graphs andmanifolds
using mixture model cnns. In Proceedings of the IEEE Conference on CVPR. 5115–
5124.

[16] Hoang NT and Takanori Maehara. 2019. Revisiting graph neural networks: All
we have is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).

[17] Yu Rong,Wenbing Huang, Tingyang Xu, and JunzhouHuang. 2019. Dropedge: To-
wards deep graph convolutional networks on node classification. In International
Conference on Learning Representations.

[18] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[19] Neil Shah. 2020. Scale-Free, Attributed and Class-Assortative Graph Generation
to Facilitate Introspection of Graph Neural Networks. KDD Mining and Learning
with Graphs (2020).

[20] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[21] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE signal processing magazine 30, 3 (2013), 83–98.

[22] Ryan J Tibshirani et al. 2014. Adaptive piecewise polynomial estimation via trend
filtering. The Annals of Statistics 42, 1 (2014), 285–323.

[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[24] Yu-Xiang Wang, James Sharpnack, Alexander J Smola, and Ryan J Tibshirani.
2016. Trend filtering on graphs. The Journal of Machine Learning Research 17, 1
(2016), 3651–3691.

[25] Huijun Wu, ChenWang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. 2019. Adversarial examples on graph data: Deep insights into attack and
defense. arXiv preprint arXiv:1903.01610 (2019).

[26] Jun Wu, Jingrui He, and Jiejun Xu. 2019. Net: Degree-specific graph neural
networks for node and graph classification. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 406–
415.

[27] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[28] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD. 974–983.

[29] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure
Leskovec. 2018. Hierarchical graph representation learning with differentiable
pooling. In Advances in neural information processing systems. 4800–4810.

[30] Lingxiao Zhao and Leman Akoglu. 2019. Pairnorm: Tackling oversmoothing in
gnns. arXiv preprint arXiv:1909.12223 (2019).

[31] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil
Shah. 2020. Data Augmentation for Graph Neural Networks. arXiv preprint
arXiv:2006.06830 (2020).

[32] Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. 2021. Interpreting
and Unifying Graph Neural Networks with An Optimization Framework. arXiv
preprint arXiv:2101.11859 (2021).

[33] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on graph
neural networks via meta learning. arXiv preprint arXiv:1902.08412 (2019).

	Abstract
	1 Introduction
	2 Representative Graph Neural Networks
	2.1 Graph Convolutional Networks
	2.2 Graph Attention Networks
	2.3 Personalized Propagation of Neural Predictions

	3 GNNs as Graph Signal Denoising
	3.1 Connection to PPNP and APPNP
	3.2 Connection to GCN
	3.3 Connection to GAT

	4 Ugnn: A Unified GNN Framework via Graph Signal Denoising
	5 Ada-Ugnn: Adaptive Local Smoothing with Ugnn
	5.1 Feature Transformation
	5.2 Feature Aggregation

	6 Experimental Evaluation
	6.1 Node Classification
	6.2 Robustness Under Adversarial Attacks

	7 Related Works
	8 Conclusion
	References

