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ABSTRACT
How do users on social platforms consume content shared by their
friends? Is this consumption socially motivated, and can we predict
it? Considerable prior work has focused on inferring and learning
user preferences with respect to broadcasted, or open-network con-
tent in public spheres like webpages or public videos. However, user
engagement with narrowcasted, closed-network content shared by
their friends is considerably under-explored, despite being a com-
monplace activity. Here we bridge this gap by focusing on consump-
tion of visual media content in closed-network settings, using data
fromSnapchat, a largemultimedia-driven social sharing servicewith
over 200M daily active users. Broadly, we answer questions around
content consumption patterns, social factors that are associated
with such consumption habits, and predictability of consumption
time. We propose models for patterns in users’ time-spending be-
haviors across friends, and observe that viewers preferentially and
consistently spend more time on content from certain friends, even
without considering any explicit notion of intrinsic content value.
We also find that consumption time is highly correlated with several
engagement-based social factors, suggesting a large social role in
closed-network content consumption. Finally, we propose a novel
approach ofmodeling future consumption time as a learning-to-rank
task over users’ friends. Our results demonstrate significant predic-
tive value (0.815 P@1, 0.650 nDCG@10) using only social factors.
We expect our work to motivate additional research in modeling
consumption and ranking of online closed-network content.
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1 INTRODUCTION
Social platforms offer a multitude of ways for users to interact and
communicatewith eachother. Interactions vary frommechanisms as
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(a) Open-Network (b) Closed-Network

Figure 1: (a) shows an example of open-network content.
Here, content aims to please a large audience. In contrast, (b)
showsanexampleofclosed-networkcontent,wheretheaudi-
ence is one or few individualswho are familiar to the creator.

light as likes, pokes, and upvotes to ones as involved as text messag-
ing, media sharing, and monetary transfers. A developing trend in
several large platforms is for user-to-user interactions to happen pre-
dominantly by sharing visual media content, like images and videos
(e.g., Snapchat, Instagram, TikTok). Moreover, even platforms that
are not primarily visual such as Facebook,WhatsApp, and Reddit, all
offermedia sharing capabilities. The recent years have demonstrated
the large and ever-growing popularity of visual media. Users spend
daily an average of 30 minutes on Snapchat [31], exchange 95 million
photos and videos on Instagram, [32] and watch more than 1 billion
hours of video on YouTube [5].
On most social platforms, users can share content with different

target audiences in mind; settings commonly include open-network
sharing (exposure to all other users on or off-platform), or closed-
network sharing (exposure to a limited set of one or more of a users’
friends) – Figure 1 shows an example. Despite these two distinct con-
tent creation and sharing modalities, past work in the data mining
and adjacent communities has largely focused on content consump-
tion predominantly in the open-network setting. Notably, the recom-
mendations and information retrieval communities mainly tackle
the problem of matching user preferences with openly accessible
content (visual, or otherwise) like songs, videos, products, webpages,
and other users via search and ranking paradigms. Additionally,
many works in the computational social science domains focus on
large-scale social dynamics and interactionprocesses such as virality,
diffusion, and cascades of public information, tweets, media, and
memes [2, 3, 8]. Comparatively, there is a gap in work on content
consumption in closed-network settings where users often share
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content to communicate personal moments, daily updates, inside
jokes, and more [10]. Interaction with one’s closest friends is vital
to the end-user experience, making it a valuable research area.
Our work lies at the intersection of visual media and content

consumption: specifically, we study consumption of visual media
content in closed-network settings, where the content is created and
shared between friends. Interestingly, the content shared in such
networks could be especially meaningful or contextually relevant
to the specified viewer audience given that the sender and viewer
likely share an off-platform relationship of significance, in contrast
to more general open-network consumption settings.

Given this nuance, ourwork aims to address key questions around
consumption of content in closed-network settings. Specifically,we ask:

RQ1 Are there patterns in users’ consumption of content with
regard to the senders?
RQ2Are these patterns associated with other social factors?
RQ3 Can we use social factors to predict future consumption
intensity of the content sent by friends?

Our work makes contributions in response to these questions:
C1.Weconduct the first empirical analysis of closed-network con-
tent consumption habits, using interaction data from Snapchat,
a large-scale, multimedia-driven sharing service with over 200M
active users.We show patterns in user’s consumption (dwell time)
behavior towards friends, and propose interpretable, parametric
models based on log-normal decay to accurately capture this. Our
models describe total and average dwell time behaviors across
friendswhich outperformalternatives for 61.2% and 85.6% of users
respectively (Section 4).
C2. In order to explain the consumption patterns, we investigate
various social factors (notions of tie strength) that could be as-
sociated with preferentiality towards certain friends, and show
that engagement-based factors strongly correlate with future
consumption while network-based factors do so much less sig-
nificantly. We also identify interesting social explanations which
may underpin our correlational observations (Section 5).
C3. The correlation between consumption and social factors mo-
tivates us to study the task of ranking contentwith respect to their
senders, which we call friend ranking. We show out-of-the-box
learning-to-rank approaches can achieve strong predictive per-
formance (0.815 P@1, 0.650 nDCG@10) in ranking friends based
only on easily measured social factors, without the privacy or
computational implications of any content-based factors, which
is crucial in closed-network settings (Section 6).

2 RELATEDWORK
We discuss related work in three adjacent spaces: user engagement
modeling, social ties and influence, and user preference learning.

User engagementmodeling.Many prior works tackled charac-
terization, modeling, and forecasting specifically for explicit actions
on public, open-network content such as page likes [26], tweets [11],
follows [15], clicks [37] and general metrics [30]. However, owing to
sparsity in explicit feedback, several recent works (including ours)
consider implicit signals such as dwell time (time spent) on items in
different engagement contexts. For example, [35] shows lognormal
decay on user dwell times on short-text documents and uses them in
collaborative filtering. Several works focus on dwell time in search
contexts; [34] uses dwell time for candidate document reranking,
while [6, 21] measure and model webpage dwell times using sim-
ple parametric forms. Most works do not consider dwell time in

visual media; [16] is the closest, but focuses on open-network con-
tent. Severalworks consider community detection from engagement
[1, 12, 27], but are not suited to content consumption.Unlike all these
works, ours (a) considers dwell time engagement with closed-network
visual content, (b) identifies patterns in dwell time with respect to the
senders, and (c) demonstrates its association with various social factors.

Social ties and influence. Past work on measuring and quanti-
fying social factors has been largely driven by the computational
social science community, and mainly involves associating engage-
ment with underlying network features. One line of work centers
on tie strength and inference (link prediction). [25] utilizes network
motifs on Twitter to identify strong ties. [33] proposes an unsuper-
vised model to estimate tie strength from interactions. [19] learns
a model to predict tie polarity using path, triad and signed edge fea-
tures. Many works propose unsupervised network-based heuristics
in link prediction settings to measure user-user affinity; [20] gives
an overview. Our setting differs in that we model engagement and
consumption over afixed set of links (friends), rather than inferring new
ones.Another line of work considers social influence on user behav-
iors. [28] shows positive correlation between users’ chat frequency
and similarity in their web searches. [3] demonstrates that a user’s
exposure to links shared by Facebook friends increases their own
sharing propensity multifold. Social influence on user behaviors has
also been explored in the context of open-network reshare cascades;
[2] studies their predictability on Twitter given network features.
Similarly, [8] shows that structural and poster/resharer features are
predictive of cascade growth on Facebook. Recently developed so-
cial recommendation approaches [23, 29] leverage social relations in
addition to public user-item feedback to improve recommendations.
In contrast, our work differs by (a) predicting future consumption from
past engagement, and (b) focusing on closed-network phenomena.

User preference learning. There is significant past work in
learning user preferences of open-network content such as movies
[14], documents [17], videos [4] and more. Much of this is driven by
modern improvements in learning to rank (L2R) approaches from
the information retrieval (IR) community [22]. While our work does
not emphasize methodological novelty in this space, it has strong
practical applications as we show later. Our work (a) shows how a
L2R paradigm can be adapted to rank friends of each user based on
engagement, (b) shows relationships between consumption and social
engagement, and (c) demonstrates strong performance without explicit
content-based modeling, which is crucial in privacy-sensitive settings.

3 BACKGROUND
3.1 Preliminaries
User designations. In each content sharing interaction, we refer

to the source user as the sender and the recipient as the viewer. Two
users may be senders and viewers for different interactions, but each
interaction has a single notion of viewer and sender. When we refer
to consumption behavior of a user,we consider interactions inwhich
the user (viewer) views content shared by his/her friends (senders).

Measuring consumption. We use dwell time to measure the
intensity of a consumption interaction (a single view). Dwell time
is a powerful signal which can act as a proxy for a user’s interest/
preference; longer dwell times suggest continued interest. Although
various contents can have varying durations, thereby influencing
dwell times, [16] shows that the vast majority of views are quite
short and unhindered by content duration – thus, we do not explic-
itly model this covariate.



Consumption settings. In this work, we refer to a user’s con-
sumption of content created by their friends and sharedwith them as
closed-network consumption. Examples of closed-network consump-
tionwould be a user viewing a photo of a sunset shared by their part-
ner, or of a user watching a video of a friend’s child learning to swim.
In contrast, we use open-network consumption to refer to the case in
which consumed contents may be publicly accessible and created or
shared without a constrained audience in mind. Examples of open-
network consumption would be watching a YouTube video about
cats, orwatchingapopularTVshow.Thesedesignations implydiffer-
ent target audiences: in closed-network settings, content is privately
created/shared with one or more social relations/contexts in mind.

3.2 Data Description
We study consumption behavior using data from Snapchat, a leading
visual media content sharing platform with over 200M users. Our
data includes consumption metrics (in terms of dwell times), as well
as various social interactions. We introduce interaction types and
collection process below.

Direct Snap. Users on Snapchat can share private image/video
content samples called Direct Snaps with their friends in 1:1 or 1:few
fashion. Direct Snaps (Snaps) are visible in the friend’s inbox un-
til watched. We capture the bidirectional edges between users and
friends reflecting the number of Direct Snaps sent and received by
each pair of users, and the associated dwell times.

Story. Users on Snapchat can post image/video content samples
on their “My Story,” which is a passive broadcast to their friends in
a 1:all fashion – these are called Story Snaps. Story Snaps (Stories)
are only visible for 24h, and not pushed to friends, but rather pulled
(voluntarily). We capture the bidirectional edges between users and
their friends reflecting the number of Story Snaps viewed for each of
the two users forming an edge, as well as the associated dwell times.

Chat.Users on Snapchat can also exchange private text messages
called Chats, in a 1:1 fashion. We capture the bidirectional edges
between users and their friends reflecting the number of Chats sent
and received by each of the two users forming an edge.

Friend Graph.We additionally use an (undirected) graph which
tracks friendship links between users, and time of link formation.

We collect data over the span of a consecutive two-month period
in 2019; we impose different sampling constraints across months to
support conditions to address different RQs while not processing
extra data, and enable analysis of past engagement (1st month) w.r.t
future consumption (2nd month). For the 2nd month, we sample 13M
unique viewers (users), with 29M unique senders (friends) and 976M
directed interaction edges (488M undirected friendship edges), with
many interactions per edge. Each viewer has ≥10 associated senders
from whom he/she has viewed ≥50 Snaps. For the 1st month, we
additionally consider interactions between these 13M viewers and
any senders fromwhom they viewed ≥1 Snap. Section 8.1 further
details constraint rationale, data use in different experiments and
collection considerations.

4 MODELINGCLOSED-NETWORK
CONTENTCONSUMPTION

Given these preliminaries, we begin by characterizing users’ (view-
ers’) consumption behaviors both in aggregate, and broken-down
across friends (senders). Our work considers the consumption with
respect to Snaps, the most private and common visual interaction.

(a) Media samples consumed (b) Aggregate consumption time

Figure 2: Rank-frequency plots of (a) media samples (Snaps)
consumed, and (b) viewer time spent (note log scales). Con-
sumption behaviors are highly skewed in closed-network
content, demonstrating log-normal tendencies.

4.1 Aggregate consumption
We first consider overarching patterns across viewers’ (users’) ag-
gregate consumption of content in terms of (a) number of consumed
media samples (Snaps), and (b) amount of time spent on media sam-
ples in seconds.

Figure 2 shows the two phenomena in rank-frequency form, using
consumption data from one (1st) month of data. 2a shows the ratio
of viewers who consumed k media samples. Likewise, 2b shows the
ratio of viewerswho spent k seconds consumingmedia samples. The
artifact at the top-left of the plot is explained by discretization effects
(∼1 sec. is more common than ∼0). We note that both phenomena
show a slow decline even in log-log scales, indicating their strong
right-skewness and heavy tails. Empirically, we find that both are
log-normally distributed. Formally:

Definition 4.1 (Log-Normal Distribution (LN)). Let T be a non-
negative continuous random variable, such that T∼ LN(µ,σ). The
PDF and CDF of T are given by:

fLN(t;µ,σ)=
1

tσ
√
2π

e–
(logt–µ)2

2σ2 FLN(t;µ,σ)=Φ
(
logt–µ

σ

)
where t ∈ (0,∞), µ ∈ (–∞,∞) and σ > 0 are the mean and standard
deviation of logT, and Φ indicates the standard normal CDF.

While log-normal decay is consistent with prior literature on
various aggregate open-network consumption or engagement phe-
nomena such as dwell time on public videos [16] and user voting
behaviors on public news articles [18], our findings indicate that this
behavior also holds in closed-network contexts.

4.2 Friend-specific consumption
Closed-network consumption occurs when users consume content
sharedby their friends, but howdoes this consumptionhappen?How
do users apportion their consumption behaviors across friends, and
are they partial to some friends more than others? Below, we focus
on measuring consumption via two notions of intensity, reflecting
“total” and “expected” behaviors with respect to each friend.

4.2.1 Total Consumption (TC). We describe total consumption
intensity (TC) between a user and his/her friend as the total time
spent by the user on consuming the friend’s contents. Formally,

TC(u,f )=
∑

c∈Cf�u

δ(c)

where Cf→u denotes the set of contents shared from friend f to user
u, c denotes (without loss of generality) one such content sample,
and δ(c) indicates the time spent by u in consuming the content c.



Note that TC is a summation of all the time spent on a given
friend’s contents, and is thus heavily mediated by the frequency of
communication between two friends i.e., given equal propensity
for user u to consume content samples from friends f1 and f2, then
TC(u,f1)>TC(u,f2) if |Cf1�u|> |Cf2�u|. Thus, given a supposed asym-
metry in communication frequency across friends, TC should be
affected. Figure 3 demonstrates that this is indeed the case, show-
ing patterns in TC for several randomly sampled users with 100
friends – in all subplots, the y-axis indicates a user’s normalized
consumption times over friends, and the x-axis indicates the friends
ranked from highest to lowest TC.We find that TC is highly skewed,
such that a few friends dominate the metric, though the degree of
dominance by top friends differs. The differences in y-axes values in
the figures indicate that the skewness can vary considerably due to
the fact that different users demonstrate different preferences and
communication habits towards their friends.

We ask, is there a pattern in the decay of TC over a user’s friends?
To study this, we evaluate howwell TC habits of many real users are
described by parametric forms. We empirically analyzed viewing
behaviors of 100K sampled users with ≥50 friends from our base
dataset. We used a sample for computational efficiency, and a larger
friend/sender threshold to better capture distribution tails.

Specifically, we aimed to describe the rank-intensity distributions
(as in Figure 3) for each of the viewers as one of several parametric
forms. Although the underlying distributions we consider are dis-
crete, we use continuous approximations in line with past literature
when handling large outcome spaces [13]. We considered the trun-
cated (T) variants of seven underlying candidate distribution types:
Exponential (E), Log-logistic (LL), Inverse Gaussian (IG), Weibull
(W),Gamma (G), Pareto (P) andLog-normal (LN),whichhavedemon-
strated effectiveness in prior dwell time literature [9, 16, 21, 38]. We
optimized these parametric forms for each user via maximum like-
lihood estimation (MLE) to achieve the best fit in each case, and
measured the performance of these distributions by the fraction of
users which were best-modeled (highest likelihood) by each of them
versus the others (in one vs. rest fashion). Additionally, since the dis-
tribution for different users dependsonnumberof friends (maximum
rank), we evaluate goodness-of-fit with respect to right-truncated
distributions,where theprobabilitymeasure is defined as 0 for values
larger than the true number of friends n (wlog), and the remaining
density on (0,n] is renormalized to integrate to unity. Table 1 shows
that the TLN (truncated log-normal) form strongly and consistently
outperforms alternatives – the table is meant to be read as “TLN
outperforms TE for 89.7% of users.” We define the TLN formally as:

Definition 4.2 (Truncated Log-Normal (TLN) Distribution). Let
T be a non-negative continuous random variable, such that T ∼
TLN(µ,σ,n). The PDF and CDF of T are given by:

fTLN(t;µ,σ,n)=fLN(t;µ,σ)
/
Z FTLN(t;µ,σ,n)=FLN(t;µ,σ)

/
Z

where t∈ (0,n], Z=FLN(n;µ,σ) (truncation normalization constant)
and µ,σmatch Defn. 4.1.

Dashed red lines superimposedon the subplots in Figure 3 indicate
the MLE fits for the TLN distribution in each case, closely following
the user behaviors despite individual variations.

4.2.2 Expected Consumption (EC). We describe expected con-
sumption intensity (EC) between a user and his/her friend as the
expected (average) time spent by the user on consuming the friend’s

Figure 3: Rank-intensity plots of total consumption (TC)
partitioned over friends for 9 sampled viewers (note linear
scale). TC is highly skewed over top friends, and closely
follows our proposed TLN distribution (dashed red lines).

Table1: Performancecomparisonfor totalconsumption(TC)
and expected consumption (EC) under MLE log-likelihood:
log-normal forms win (★), outperforming alternatives by
largemargins.

TE TLL TIG TW TG TP TLN
TC 89.7% 92.6% 61.2% 84.7% 85.6% 100.0% ★

UTE UTLL UTIG UW UTG UTP UTLN
EC 98.0% 95.3% 85.6% 97.3% 97.2% 99.7% ★

shared contents. Formally,
EC(u,f )=

∑
c∈Cf�u

δ(c)
/
|Cf�u|

where the symbols are consistent with the TC setting, and the |·|
operator denotes set cardinality.

Unlike TC, EC is an average or expectation of time spent on a given
friend’s contents, and the normalization of the communication fre-
quencybetween two friends.TheECrepresents the expected amount
of time spent on a single content sample from the friend. The EC is
arguably a more interesting measure to study since it can be used
to reason about the attention a user is willing to spend on his/her
friend given the opportunity. This is a key consideration, as some of
a user’s friends may communicate more or less frequently, giving
a user more or less opportunity to consume content. Skewness in
communication frequencies is a reality in social communications,
and thus produces skewed opportunities for consumption. Butwhen
normalizing for this skewness via EC, we are interested to discover
how consumption is distributed? Are friends equally likely to spend
time on each other in this setting, or is there latent preferentiality
when choosing to consume friends’ content given the opportunity?

Figure 4 shows EC patterns for several randomly sampled users
with100 friends (ECestimatedacross≥50content samplesper friend)
– thesubplots indicatenormalizedEConthey-axisand friendrankon



the x-axis, similarly to Figure 3. Note that no preferentialitywould be
indicated by a uniform distribution. Fascinatingly, the results show
strong non-uniformity over the friends, given that users’ EC tends
to be strongly skewed at the head of the distribution and implies sig-
nificant preferentiality towards certain friends. Our analysis across
many users shows a variably placed, but consistently steep dropoff
of EC over the top 1 or few friends, with an eventual taper tending
towards uniformity in the tail (especially apparent in Figure 4 where
the tail is emphasized). This suggests that even when accounting
for different communication frequencies and consumption oppor-
tunities from their friends, users are more likely to prioritize and
pay attention to some of their friends’ contents more than others’.
However, there is likely a minimal, or token, EC afforded to content
frommore casual or distant friends (towards the right on the x-axis).

Interestingly, the tails of the EC distributions in Figure 4 are rather
fat, and seem to not decay significantly or at all after a certain friend
rank (depending on the user), which is consistent with our hypoth-
esized token EC afforded by the user to their friends (independent of
rank). Tomodel this,we adopt the sameMLE-based experimental set-
ting to evaluate goodness-of-fit, butwe consider the aforementioned
truncated distributionsmixed with an additional uniform compo-
nent to capture this supposed token EC. The uniform component
describes a token EC allotted to all friends, which could intuitively
correspond to a level of baseline interest or time spent by the user
in consuming content, anything over which is described according
to a more flexible (non-uniform) decay process.
We empirically analyzed viewing behaviors of 100K randomly

sampled users with ≥50 friends, where each user had viewed ≥50
content samples from each friend. We used this minimum content
samples designation to enforce robustness in the EC estimate, since
an average over few samplesmaybe unreliable. Table 1 shows results
(uniformmixtures indicated by a U prefix), indicating that the UTLN
(uniform truncated log-normal mixture) strongly outperforms alter-
natives. We define the UTLN formally as:

Definition 4.3 (Uniform Truncated Log-Normal Mixture (UTLN)
Distribution). Let T be a non-negative continuous random variable,
such that T∼UTLN(µ,σ,n,ϑ). The PDF and CDF of T are given by:

fUTLN(t;µ,σ,n,ϑ)=ϑfU(t;n)+(1–ϑ)fTLN(t;µ,σ,n)
FUTLN(t;µ,σ,n,ϑ)=ϑFU(t;n)+(1–ϑ)FTLN(t;µ,σ,n)

where ϑ ∈ [0,1] (mixture probability), fU(t;n) = 1/n (uniform PDF),
FU(t;n)=t/n (uniform CDF) and t,n,µ,σmatch Definition 4.2.

Again, dashed red lines superimposed on the subplots in Figure 4
indicate the impressive closeness of theMLE fits for the UTLN distri-
bution in each case. Note the flexibility of the mixture to well-model
the nuances of the distributions.

Overall,we show thatmost users tend to be at least somewhat pref-
erential towards certain friends, with few users being extremely so.
We now turn to quantify this preference by computing the Kullback-
Leibler (KL) divergence between the expected consumption distri-
bution and uniform distribution (assuming consumption time is
distributed equally among friends) for each user. We call the ob-
tained KL divergence as “preferentiality score”. Figure 5a plots the
cumulative distribution of the preferentiality scores across all users.
Non-zero score indicates a positive degree of preferentiality, and
we observe that most users meet this criteria. Most users show a
preferentiality akin to that in bucket 1 (top friend with 2× EC of the
next), but there are also some users who are extremely preferential

Figure 4: Rank-intensity plots of expected consumption (EC)
partitioned over friends for 9 sampled viewers (note linear
scale). EC is highly skewed over top friends, after which
decay slows considerably – note the fat tails. The pattern
closely follows our proposed UTLNmixture distribution.

as in bucket 4 (top friend with 8× EC of the next). Next, we consider
if this preferentiality is likely to be socially motivated.

5 ASSOCIATIONWITH SOCIAL FACTORS
We found that users are preferential towards certain friends when
consuming their content. Therefore, we hypothesize that content
consumption is mainly driven by two phenomena: (a) social factors,
and (b) content-based factors. Social factorsmight indicate theprefer-
ence of a user to engagewith a friend’s content due to the underlying
relationship (a user may not care for the content itself, but care for
the sender). Conversely, content-based factors might indicate user
interests in various types of contents (someusersmight prefer videos
about cars, others might prefer videos about dogs). In practice, these
factors are impossible to disentangle; it is not possible to counterfac-
tually evaluatehowauserwouldconsume the samecontent fromtwo
different friends at the same time. Moreover, content-based factors
are extremely challenging to quantify in closed-network settings,
givenboth subjectivity inuser interests aswell asprivacy/encryption
of content (making inspection and analysis of content infeasible). On
the other hand, social factors in association with consumption are
appealing to study, given (a) prior literatureonmeasuringandquanti-
fying social factors (i.e. tie strength) between individuals in network
contexts [24], (b) no need to viewprivate content, and (c) lighter com-
putational load compared to deep/visual content-basedmethods. But
are social factors actually significantly associated with consumption
behaviors?We investigate the relationship in this section.

We aim to understand the correlations between past social factors
and future consumption behaviors between users and friends. We
consider various tie strength notions between a user/viewer u and
friend/sender f given their engagement and network-based relations
in the past:

• Chat (direct textual content to friends) engagement-based
– Chats sent by u to f
– Chats received by u from f



(a) KL CDF v.s uniformity (b) Bucket 1 (c) Bucket 2 (d) Bucket 3 (e) Bucket 4

Figure 5: Most users are preferential w.r.t expected consumption (EC), with few, select friends receiving markedly higher
attention than others. (a) shows the empirical CDF of user preferentiality, taken over all 13Musers towards their friends, where
preferentiality is measured by KL divergence of a user’s EC distribution w.r.t. a uniform one. (b)-(e) show EC distributions for
4 sample users from each of the buckets designated in (a) – note the increasing degrees of preferentiality across buckets. Most
users fall in the 1st bucket, where preference is marked but not extreme, e.g. the top friend has 2× the EC of the next in (b).
However, some users are extremely preferential, e.g. the top friend has 8× the EC of the next in (e).

• Snap (direct visual content to friends) engagement-based
– Snaps sent by u to f
– Snaps received by u from f
– Incoming EC time to u’s Snaps by f
– Outgoing EC time to f’s Snaps by u

• Story (broadcast visual content to friends) engagement-based
– Stories posted by u and viewed by f
– Stories viewed by u and posted by f
– Incoming EC time to u’s Stories by f
– Outgoing EC time to f’s Stories by u

• Network-based (features about network context)
– Common neighbors between u and f
– Friendship tenurebetweenuand f (time since tie formation)

To measure the relationship strength we used Spearman rank
correlation [36], which evaluates the strength and direction of the
relationship between two variables. It is based on the ranks, rather
than raw values, between the two variables. Given user u with n
friends (wlog), we consider a past social factor ®s and future consump-
tion rank vector ®c, such that®si,®ci are the ordinal ranks of the ith friend
(largest to smallest). The Spearman correlation for u is defined as
ρu =1–

(
6
∑

id2i
) / (

n
(
n2–1

) )
where di =ci–si. ρu is defined on [–1,1],

with 0/-1/1 implying no/perfectly -ive/perfectly +ive correlation,
respectively. Significance can be computed using permutation tests
which give p-values against the null hypothesis H0, which supposes
that the two variables are uncorrelated.

The left side of each subfigure in Figure 6 shows empirical CDFs of
ρu across all viewers under various notions of past tie strength s. Blue
curves which are right-skewed imply that most users demonstrate
a +ive ρu between the given ®s and ®c (EC), left-skewed imply the -ive
case, and the dashed red curve indicates the “null” scenario (i.e. all
users exhibiting no association). Since significance is impacted by
sample size (in this case, friend count),we show ratios of userswhose
ρu had associated significance p < .05 with different friend counts
in the right side of each subfigure (blue/red curves show +/-ive cor-
relation, respectively). We see that these ratios becomemore stable
when considering more friends, and +ive correlations become more
pronounced. Altogether, Figure 6 shows several interesting findings,
which we discuss below.

Strong +ive correlation with engagement. Firstly we can see
the majority of users fall in the first group (+ive correlation) for all
engagement-based tie-strengthmeasures (a)-(j). For example, future
EC is +ively correlated for 88%/95%/83% of users for number of Chats
sent (a), outgoing Snap EC (g), and outgoing Story EC (i). In all cases,

considering more friends over measurement of ρu increases signif-
icance. For example, the right-hand side of (a) shows that over 90%
of users with 100 friends have significant +ive correlations between
number of Chats sent and future consumption.

Directional importance. Secondly, we can notice that while
both outgoing and incomingmetrics are +ively correlatedwith future
EC intensity, outgoing metrics show slightly to markedly stronger
correlations to their incoming counterparts for all 3 engagementmet-
rics. For example, over 83%ofusershave+iveρu inoutgoingStoryEC
(i), compared to 72% in incoming Story EC (j). This is intuitive, since
the perception of any relationship (and propensity to engage) be-
tweenuand f likely differs between the two.But, as onemight expect,
u’s outgoing (voluntary) engagement with f tends to better capture
his/her affinity for f compared to the inverse (involuntary) setting.

Consistencewith past preferences.Thirdly, of all factors, past
outgoing Snap EC is most strongly correlated to future Snap con-
sumptionEC (g). Thepast beingpredictive of the present is especially
meaningful in this setting, as it shows that users’ time-spending pref-
erences across friends are not too different despite entirely different
content being viewed during past and future periods; the correlation
strength suggests that a large portion of the variance between past
and future consumption is explained by the underlying social con-
text of the interactions. This suggests that content-based factorsmay
offer limited added value.

Target audience and interaction depth. Fourth, we note that
Story engagement (e-f, i-j) does have a consistent +ive association
with future consumption, but is markedly less than Snap/Chat mea-
sures; this is likely due to Story engagement carrying less person-
alized social context (since it is broadcast to all friends), in contrary
to the more private nature of Snap/Chat engagement. Moreover,
between Snap/Chat settings, we notice that despite Snap EC features
(g-h) demonstrating very strong correlations, past Chat frequency
(a-b) correlates more strongly with future consumption than Snap
frequency (c-d), likely due to the different social contexts of private
1:1 textmessaging, versus possible 1:fewSnapmessaging. Intuitively,
a user might casually share dinner photos and flattering selfies with
a few friends, but only initiate conversation (Chat) with those who
they expect responses from.

Lower correlation with network-based factors. We notice
considerably lower and less strong association between network-
based features like common friends (k) and friendship tenure (l) with
future EC. The former (k) shows an interesting complement to tradi-
tional link prediction literature,which holds that commonneighbors
are very useful as a tie-strength measure, albeit in the context of



(a) Number of Chats sent (U to F) (b) Number of Chats sent (F to U) (c) Number of Snaps sent (U to F)

(d) Number of Snaps sent (F to U) (e) Number of F’s Stories which U viewed (f) Number of U’s Stories which F viewed

(g) Outgoing Snap EC time (U to F) (h) Incoming Snap EC time (F to U) (i) Outgoing Story EC time (U to F)

(j) Incoming Story EC time (F to U) (k) Number of common friends (neighbors) (l) Friendship tenure

Figure 6: Consumption is significantly correlated with engagement-based social factors. Each subfigure shows the (blue) CDF
of Spearman ρ between a past-measured social factor and future-measured EC taken over friends of each user (left), and the
ratio of +/-ive significance (p < .05) when considering users with varying friend counts (right). Right-skewed CDFs (left) show
that more users have +ive correlation between past engagement and future EC (88% in (a), 78% in (c), 90% in (h) etc.), with ratio
of +ive significance (blue, right) clearly substantiating the effect as we consider users withmore friends (over 90% users w/ ≈100
friends have significant +ive correlations). Network-based features like common neighbors and tie duration are markedly less
clearly correlated, with 62% +ive for (k) and 48% +ive for (l).

link formation. (k) suggests that once these ties are formed, common
neighbor features are still +ively associated (for 62% of users) with
EC, butmuch less so compared to other engagement-related features.
The latter suggests that contrary to expectations, users overall do
not convincingly prefer very old or new friends in terms of future
consumption (48% +ive, 52% -ive). We hypothesize that highly pre-
ferred friends may be a mix of the two; long-standing friends may
share content better imbuedwith relationship andmeaning, butmay
not be as immediately relevant to a user’s current social situation
(consider a user with old friends from their childhood, but with new
friends in a newworkplace).
Altogether, our results suggest that many social factors are con-

siderably correlatedwith future consumption, even in the absence of
explicit content modeling. This offers significant promise in solving
predictive modeling problems around closed-network user/content
prioritization, which are common in many social platforms.

6 PREDICTING FUTURECLOSED-NETWORK
CONTENTCONSUMPTION

The correlations we reported lead us to ask, howwell can we predict
future consumption using social factors? In closed-network content

sharing modes, users may receive multiple (possibly visual) mes-
sages and must choose which users’ contents they want to consume
(typically given intrinsic time and interest budgets) through an in-
terface which gates the content behind an inbox from each friend
(e.g. Figure 7). Moreover, content from any of these users may be
(un)available at different times, leading to ranking over subsets of
these friends, and indirectly their contents. Thus, it is important
to make fast, on-the-fly choices to feature the most relevant and
engaging content from a user’s friends. Solving this task can lead to
improved prioritization of content, increased engagement and time
spent, and improved user experiences.

Friend ranking. Inspired by the notion of Learning toRank (L2R)
in the IR community, typically considered on documents in search
contexts, we propose a friend ranking setupwhere instead of a query
q and candidate documentsD, we have a user u and friends F . The
goal is to learn a function which produces a ranking which favors
f i to f j if u prefers f i to f j (wlog) in terms of consumption, on unseen
data. As L2R is a well-studied problem in other contexts, we adapt
and consider existing approaches for our setting. We pre-process
training data for friend ranking using large-scale user/friend interac-
tion data, with past engagement/ tie strength scores between u and f



(wlog) as features over one month of data, and defining labels using
future consumption metrics from the next month. We emphasize
that our goal here is not to contribute a newmodel to L2R literature,
but rather (a) evaluate predictive capacity of our results on social
significance and friend-based preferentiality in closed-network con-
sumption, and (b) demonstrate a novel and practical application of
L2R and associated findings.

DefiningLabels.L2Ralgorithms in retrieval tasksareoftenbased
on a dataset of queries documents withwell-defined relevance labels
(i.e. 1 to 5). However, in our setting, ground-truth labels indicating
well-defined consumption preference are not explicitly available.
Thus, we use the EC time as the proxy to gauge users’ preference
towards their friends (motivated by the “expected time spent when
given the opportunity” setting), using empirical ECs estimated over
all Snaps viewed by u from f. One important consideration is that
users may have different consumption patterns, meaning that two
individuals may dwell differently on content sent by their most-
preferred friends (i.e. Figure 4). Thus, direct use of raw EC as prefer-
ence labels in training would bias against viewers who spent shorter
time on their friends’ content. To alleviate this, we min-max normal-
ize friends’ ECs for each user into [0,1] to get preference scores to
use as ground-truth labels.

Evaluation Setup.We report three retrieval metrics to evaluate
the effectiveness of thevarious friend ranking setups. Thefirstmetric
isprecisionover topk friends (reportedasP@[1,3,5]), classicallyused
for retrieval tasks with binary labels; we adapt for the continuous la-
bel casebydefining the top-5preferred friendsas relevantand therest
as irrelevant.Next,we reportnormalizeddiscounted cumulativegain
at different ranks (reported as nDCG@[1,3,5,10]), which emphasizes
ranking order rather than only discovery. It is defined as nDCG@k=
DCG@k/IDCG@k where DCG@k =

∑k
i=1(2

li –1)/
(
log2(li+1)

)
and

IDCG@k=
∑k

i=1
(
2i–1

)
/
(
log2(i+1)

)
, and li denotes the ground-truth

position of the friend predicted at position i. Finally, we consider
a winner-takes-all (WTA) measure which is defined asWTA=1 if
the top preferred friend is retrieved correctly, else WTA=0. WTA
is motivated by correctly inferring the strong preferentiality usually
observed towards the best friend (i.e. Figures 4-5). All reported met-
rics are averaged across users. We split the dataset into train, test,
and validation sets. Each dataset spans 100K unique viewers and
≈2.5M pairs of viewer-sender relationships.

Learner choices.We evaluate friend ranking performance us-
ing different methods. We first consider an unsupervised method
which simply sums all feature values and ranks friends based on that
score. We also consider several pointwise learned approaches in-
cluding linear regression, gradient boosted trees, and random forest,
trained to predict consumption intensity. We also consider a high-
performant pairwise method, LambdaRank [7]. Results are in Table
2. We observe that unsupervised and linear methods perform con-
siderably worse across all metrics compared to nonlinear methods.
Since LambdaRank performs best, we use it in further experiments.

Feature importance.We consider the impact of past social fac-
tors in ranking performance via feature ablation – see Table 3. We
observe that (a) private visual communication (Snap) features have
surprisingly strong importance even in isolation, and (b) of the other
two engagement-based factors, Chat is more predictive than Story,
substantiating our observations on consistence with past preferen-
tiality and target audience from Section 5. Chat & Snap together out-
perform Snap & Story, further demonstrating effects of interaction

Figure 7: An example of closed-network content prioriti-
zation on Snapchat: a user must choose between viewing
unseen contents sent by 5 friends, and if, when, and how
long they want to consume it; ranking can improve user
experience and engagement propensity.

Table 2: Nonlinear ranking methods strongly outperform
simpler (linear and naïve unsupervised) methods, in both
pointwise and pairwise EC-based friend ranking.

Precision@k nDCG@k WTA

1 3 5 1 3 5 10 1

Unsupervised 0.617 0.560 0.504 0.271 0.334 0.387 0.476 0.162
Linear Regression 0.613 0.552 0.505 0.265 0.331 0.389 0.487 0.158
Gradient Boosting 0.811 0.724 0.643 0.451 0.515 0.568 0.646 0.311
Random Forest 0.813 0.724 0.644 0.455 0.518 0.571 0.650 0.316
LambdaRank 0.815 0.725 0.645 0.456 0.519 0.571 0.650 0.316

Table 3: Engagement-based social factors aremuchmorepre-
dictive in learned friend ranking than network-based ones.

Precision@k nDCG@k WTA

1 3 5 1 3 5 10 1

Chat 0.613 0.538 0.489 0.250 0.309 0.364 0.463 0.143
Snap 0.803 0.719 0.643 0.452 0.517 0.571 0.651 0.315
Story 0.537 0.485 0.450 0.209 0.272 0.327 0.430 0.116
Chat & Snap 0.813 0.725 0.646 0.455 0.519 0.572 0.650 0.316
Chat & Story 0.625 0.501 0.411 0.260 0.322 0.378 0.475 0.150
Snap & Story 0.804 0.717 0.641 0.451 0.516 0.570 0.648 0.313
All Engagement-based 0.814 0.725 0.646 0.455 0.519 0.572 0.650 0.315

CommonNeighbors 0.400 0.368 0.352 0.133 0.181 0.228 0.327 0.065
Friendship Tenure 0.514 0.430 0.389 0.215 0.252 0.295 0.390 0.128
All Network-based 0.424 0.382 0.361 0.155 0.203 0.249 0.348 0.084

All 0.815 0.725 0.645 0.456 0.519 0.571 0.650 0.316

Table 4: Learned EC-based friend ranking strongly outper-
forms unsupervised network-based link prediction heuris-
tics in ranking friends according to future consumption.

Precision@k nDCG@k WTA

1 5 1 5 1

CommonNeighbors Index 0.233 0.193 0.078 0.127 0.038
Inverse Friend Degree Index 0.175 0.180 0.059 0.116 0.030
Adamic-Adar Index 0.252 0.212 0.080 0.134 0.037
Resource Allocation Index 0.259 0.218 0.082 0.138 0.038
Preferential Attachment Index 0.180 0.178 0.059 0.113 0.029
Jaccard Index 0.266 0.219 0.086 0.141 0.040
Salton Index 0.270 0.222 0.087 0.143 0.041
Sørensen Index 0.266 0.219 0.086 0.141 0.040
Hub Promoted Index 0.253 0.220 0.084 0.142 0.040
HubDepressed Index 0.256 0.215 0.083 0.138 0.039
Local LHN Index 0.244 0.215 0.082 0.140 0.040

Learned friend ranking 0.815 0.645 0.456 0.571 0.316



Figure 8: Friend ranking shows (a) stable performance, and
(b) linear training scalability in number of viewers.

depth. Grouping all engagement-based factors outperforms exclu-
sion of any one of them. Network-based features are comparatively
less effective; friendship tenure and common neighbors are less pre-
dictive than any engagement-based feature, and the combination ac-
tually hurts performance of friendship tenure alone. Comparable re-
sults between only engagement-based and all factors (rows 7 and 11)
shows that network-based features do not convincingly improve per-
formance when considered in addition to engagement-based ones.

Comparisonwith link predictionmethods.Most prior work
on ranking users considers user-friend link prediction applications
using network-based features [24]. The key idea is that users prefer
other userswho are close friends-of-friends. Though our friend rank-
ing task is markedly different than link prediction due to the unique
context of (a) consumption-based preference, and (b) re-ranking
existing links rather than ranking possible new ones, we evaluate
relative performance of strong link prediction heuristics in our task.
Table 4 shows performance of these methods (see Section 8 for their
definitions) compared to the learned friend ranking solution. We
see that traditionally understood network-based link prediction fea-
tures are much less effective in predicting future EC compared to
a learned ranking. This echoes our intuition from Section 5 which
suggests that consumption-based friend preference is largely associ-
ated with engagement-based rather than network-based factors. This
finding illustrates that ranking for friendship creation and friendship
time-spending/attentive preference are markedly different.

Sensitivity to data size.We evaluate sensitivity with respect to
data size in the friend ranking task in terms of both accuracy and
scalability. Figure 8(a) shows that using various data sizes (from100K
viewers/2.5M friends to 1M viewers/25M friends) gives fairly consis-
tent results for all metrics, suggesting a simple, but high-performant
ranker can be built with comparatively little user-friend data. Figure
8(b) demonstrates linear scaling in friend ranking model training
with respect to number of viewers, demonstrating fast and efficient
model learning using social features.

7 CONCLUSION
We conducted the first large-scale study of content consumption
behavior in a closed-network setting, using a dataset of over 13M
viewers, 29M senders, 966M edges and billions of fine-grained inter-
actions from Snapchat. Our analyses produce several interesting aca-
demic and application-oriented findings: We discover clear patterns
and propose models for describing closed-network consumption
habits in terms of total and expected consumption (TC, EC) across
friends; our models (TLN, UTLN) consistently outperform next-best
alternatives in modeling user behaviors (for 61.2%, 85.6% of users
respectively). We show that users are preferential, spending much
more time on content shared from certain friends than others. We
next study associations between various social factors, or notions

of tie-strength, based on engagement-based and network-based fea-
tures from (past) user-friend interactions and (future) consumption
behaviors. Our results demonstrate that consumption-based prefer-
entiality (a) is strongly correlatedwith engagement-based factors, (b)
differs in correlation strength based on engagement directionality,
(c) is strongly consistent with past-exhibited preferences despite
natural differences in underlying content shared in past and future
contexts, (d) is influenced distinctly by different target audiences
and interaction depths of engagement habits, and (e) is considerably
less correlated with network-based social factors, which shows an
interesting difference to link prediction scenarios. Finally, we show
that social factors can be leveraged for ranking friends on social plat-
forms in closed-network settings using out-of-the-box L2Rmethods,
demonstrating strong performance (0.815 P@1, 0.650 nDCG@10) by
themselves while incurring neither the privacy nor computational
cost of explicit content-based preference modeling.
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8 APPENDIX
8.1 Environment Details
Data Collection.We extract relevant user engagement and friend
graph data discussed in Section 3.2 from Snapchat cloud-based re-
lational data storage using SQL.We do not impose any constraints
on users for candidacy in our base dataset beyond those which are
required to study time-spending andpreferentiality behaviors across
friends.We collect data from twomonths. For the 2ndmonth, we con-
sider userswho have ≥10 friendswho sent them ≥50 Snaps each dur-
ing the month. From these, we sample 13M unique viewers, and con-
sider the 29M unique senders and 976M (sender, viewer) and (viewer,
sender) edges between them, each of which has numerous features
related to engagement-based and network-based interactions. For
the previous (1st month), we collect engagement data between each
of these 13Munique viewers and each sender who sent ≥1 Snap. The
different constraint for the 1st month is set to study TC across all
senders (even for thosewhodonot send frequently).Weuse these two
months of data to model user consumption behaviors, correlate past
social factors (1st month) with future consumption behaviors (2nd
month), andpredictivemodeling.Sincemostofouranalysis isviewer-
centric, we often call viewers the ”users” and senders their ”friends.”
From this underlying data, we sample further for different analyses.
Software Environment.Most analysis was done using a Python 3
kernel in Jupyter Notebooks. For consumption behaviormodeling in
Section 4, we utilized the statsmodels library, and specifically the
GenericLikelihoodModel module, which allows flexible specifi-
cation of likelihood functions, constraints, and optimization rou-
tines.We optimized likelihood usingNelder-Mead optimization. The
underlying implementations for several common PDF/CDFs were
pre-defined in the SciPy library’s statsmodule. During fitting, we
fixed location to 0 since consumption (dwell times) are nonnegative.
For correlative analysis and significance testing in Section 5, we

again used the SciPy library’s statsmodule’s built-in functional-
ities. For both Section 4 and 5, we used Python’s multiprocessing
library, taking advantage of data parallelism inherent in the tasks
to distribute batches of user analysis tasks to different cores. This
led to more time-efficient analysis.

For predictive analysis and ablation studies for friend ranking in
Section 6, we used the scikit-learn library implementations of
LinearRegression, GradientBoostingRegressor and

RandomForestRegressor, and the lightgbm library implementa-
tion of LambdaRank-based optimization. We computed link predic-
tion heuristics (Section 6) using a variant of SQL on structured friend
graph data stored in a relational database.
Hardware. We use a single Google Cloud Platform n1-standard-
96 (96 vCPUs, 360 GB RAM) virtual machine. High vCPU count
enables faster evaluation on larger datasets for some of our easily
data-parallel operations like parametric modeling and correlation
computation. LargeRAMsimplifies data loading operations onmany
user interactions in memory simultaneously. However, this analysis
is doable on commodity hardware with more efficient implemen-
tations (using incremental data loading) and more time (using less
parallelization).

8.2 Link prediction heuristics used
Link prediction heuristics have been used historically to evaluate the
propensity of a nonexistent friendship/tie to form in an underlying
friend graph; thus, they can be seen as a network-based notion of
friend rank. [24] gives an overview of such metrics and their defi-
nitions are below. They depend on node neighborhoods and degrees
between a user u and friend f. We use N(u) to denote the neighbors
of user u in the (undirected) friend graph.

• Common Neighbors Index. Friends are ranked based on
their number of shared neighbors with the user: s(u, f) =
∥N(u)∩N(f)∥.

• Inverse Friend Degree Index. Friends with lower degrees
are ranked higher i.e., s(u,f)= 1

N(f)
• Adamic-Adar Index. This is based on the commonNeighbors
approachwhile penalizing each shared neighbor by its degree
defined as: s(u,f)=

∑
a∈N(u)∩N(f)

1
log|N(a)|

• Resource Allocation Index. This is based on the Adamic-
Adar approach. It reinforces the penalization for high-degree
shared neighbors. s(u,f)=

∑
a∈N(u)∩N(f)

1
|N(a)|

• PreferentialAttachment Index. Thismodels the similarity
between two nodes based on their degrees and mirrors the
notion of "the rich get richer". s(u,f)= |N(u)|×|N(f)|

• Jaccard Index. Thismeasures the ratio of commonneighbors
with regard to aggregate number of neighbors for two nodes.
s(u,f)= |N(u)∩N(f)|

|N(u)∪N(f)|
• Salton Index. This is similar to the Jaccard score while the
number of common neighbors is scaled with a different factor.
s(u,f)= |N(u)∩N(f)|√

|N(u)|×|N(f)|
• Sørensen Index. This is similar to the Jaccard score. It re-
inforces the weight for friends who share higher number of
neighbors with the user. s(u,f)= 2×|N(u)∩N(f)|

|N(u)|+|N(f)|
• Hub Promoted Index. This avoids to assign high score for
two hub nodes solely because they share many neighbors.
s(u,f)= |N(u)∩N(f)|

min(|N(u)|,|N(f)|)
• HubDepressed Index. This promotes the ties between two
hubs and between two low-degree nodes, but not between a
hub and a low-degree node. s(u,f)= |N(u)∩N(f)|

max(|N(u)|,|N(f)|)
• Local Leicht-Holme-Newman Index. The tie is modeled
as the ratio of the number of common neighbors and the de-
gree of two nodes. s(u,f)= |N(u)∩N(f)|

|N(u)|×|N(f)|

http://time.com/4272935/snapchat-users-usage-time-app-advertising/
http://time.com/money/4376329/instagram-users/
http://time.com/money/4376329/instagram-users/
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