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Abstract
Recent work at the intersection of formal language theory and
graph theory has explored graph grammars for graph modeling.
However, existing models and formalisms can only operate on ho-
mogeneous (i.e., untyped or unattributed) graphs. We relax this
restriction and introduce the Attributed Vertex Replacement Gram-
mar (AVRG), which can be efficiently extracted from heterogeneous
(i.e., typed, colored, or attributed) graphs. Unlike current state-of-
the-art methods, which train enormous models over complicated
deep neural architectures, the AVRG model is unsupervised and
interpretable. It is based on context-free string grammars and works
by encoding graph rewriting rules into a graph grammar containing
graphlets and instructions on how they fit together. We show that
the AVRG can encode succinct models of input graphs yet faithfully
preserve their structure and assortativity properties. Experiments
on large real-world datasets show that graphs generated from the
AVRGmodel exhibit substructures and attribute configurations that
match those found in the input networks.

CCS Concepts
• Mathematics of computing→ Graph algorithms; Random
graphs; •Theory of computation→Randomnetworkmodels.
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1 Introduction
One of the principal goals of graph mining is to discover patterns
found in real-world graphs and use them to make predictions about
various relational systems. Many such systems consist of differently
typed components; it has long been argued that models which treat
graphs as homogeneous, without distinguishing different types of
objects and links, ignore important information. By leveraging these
rich semantics as attribute labels on nodes and edges, researchers
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Figure 1: (A) An attributed graph with colors representing
node attributes. (B) AnAttributed Vertex Replacement Graph
Grammar (AVRG) extracted from (A). Each grammar rule
contains an LHS and RHS. Rule frequencies are indicated
with a ×.

have developed attributed graph analysis techniques to bettermodel
such data (e.g., via heterogeneous information networks), leading
to improvements in downstream inference tasks [44, 45]. Because
graphs encode interaction information about many real-world re-
lational systems, learning how to generatively model such graphs
offers a promising window into their dynamics, spurring a rich line
of work [10, 20, 23, 36], inspiring our present one.
Present Work. Our work1 lies at the intersection of attributed
graph mining and graph generation. Specifically, we build upon
a class of local topology-aware generators called Vertex Replace-
ment Grammars (VRGs). Having their origins in formal language
theory, where objects of different types (e.g., characters, glyphs,
words, parts of speech), graph grammars offer a promising avenue
in modeling attributed graphs like the small example illustrated
in Fig. 1(A). Attributed Vertex Replacement Grammar (AVRG) builds
on recent advances in graph grammars [1, 18, 41], which were de-
signed only to model and generate homogeneous graphs, to handle
attributed graphs, increasing its applicability to a broad class of
modern problems.

Graph neural networks (GNNs) comprise a wide swath of mod-
els with similar goals in attributed graph modeling. These models
train deep neural network architectures using loss functions and
stochastic gradient descent. GNNs offer excellent modeling capacity
in downstream machine learning tasks but can be difficult to train,
have enormous parameter spaces, and do not readily permit human
inspection. Despite performing well on link prediction and node
classification tasks, some GNN architectures fail to preserve the
topological fidelity of the input graphs [40]. AVRGs, on the other
hand, can capture and model the subtle intricacies in both topologi-
cal and attribute spaces without requiring supervision, deep neural
architectures, and training.

1The source code is available at https://github.com/satyakisikdar/Attributed-VRG
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Simply put, the goal of the present work is to extract graph
rewriting rules, like those illustrated in Fig. 1(B), that are represen-
tative of the topology and attribute configuration of the original
graph. Our key idea is to use an exemplar input graph to build a
grammar of graph rewriting rules with patterns that can be applied
stochastically to generate new, diverse graphs that meet desirable
attribute and topology-related graph properties. Both formally and
through a running example, we introduce and describe the At-
tributed Vertex Replacement Grammar (AVRG) formalism and
show the following:

(1) AVRGs can extract interesting and frequently appearing at-
tributed subgraphs from large real-world graphs,

(2) AVRGs can generate graphs that match the topology and
attribute assortativity of the original graph, and

(3) the ability of AVRGs to handle a wide variety of assortative
and disassortative graphs.

Although graph grammars appear to be a natural fit for mod-
eling attributed graphs, this task presents many challenges. Our
paper describes many of the modeling decisions made as a result
and their consequences. We also demonstrate the power and flexi-
bility of AVRGs with two case studies–the former focuses on the
ability to extract meaningful patterns in Sec. 4.5, and the latter on
testing the generative ability of the model on well-known attrib-
uted graphs with various degree and attribute assortativity values
in Sec. 6.1. We find that AVRGmodels provide a succinct yet faithful
representation of input graphs–often better than attribute-based
probabilistic models and graph neural network models at a far
smaller computational cost and model size.

2 Related work
Attributed graphs are at the core of most modern graph mining
literature. Considerable prior work focuses on clustering [29, 58],
classification [54], anomaly detection [39], similarity [5, 43], and
search [48] tasks on attributed graphs. The end goal of suchmethods
is usually descriptive or inferential. On the one hand, descriptive
methods tend to focus on discovering, enumerating, or counting
patterns in given graph data [3, 16], whichmay be attributed [46, 55]
or dense [19, 28]. On the other hand, inferential methods involve
statistical reasoning over graph data to make educated inferences
(e.g., on nodes, edges, or graphs) using examples [13, 15, 21, 24, 26,
30, 47, 51, 54, 59, 59, 60].

Other works study graphs through a prescriptive lens by charac-
terizing their formation and generative processes, usually from a
mathematical perspective. This subfield, called graph generation,
typically involves positing generative processes that aim to produce
graphs with desirable (usually topological) statistical properties that
match real-world phenomena. These include exponential random
graphs [36], Kronecker graphs [23], Chung-Lu graphs [10], and
Stochastic Block Models (SBMs) [20] involves learning parameters
via likelihood maximization based on a given input graph, which
can be used to generate new graphs mimicking the input graph’s
properties. Several very recent works also involve neural graph
generation with recurrent neural networks [57], variational autoen-
coders [42], and generative adversarial networks [7]. However, most
graph generation literature focuses on non-attributed graphs. The

few exceptions [25, 31, 32] adapt Chung and Lu’s model for attrib-
uted graphs; yet, they ignore local graph topology, which is highly
diverse across nodes in real graphs [14] with implications for tasks
like anomaly detection [4], social contagion and diffusion [9, 50],
and engagement prediction [56].

A recent addition to the class of graph generators are hyper-
edge [1, 2] and node replacement [18, 41] grammars. Graph gram-
mars contain graphical rewriting rules that match and replace graph
fragments, similar to how a context-free string grammar rewrites
characters in a string. These graph fragments represent a succinct
description of the network’s building blocks, and the graph gram-
mar’s rewiring rules describe the instructions about how the graph
is pieced together. Unfortunately, existing grammar formalisms do
not provide for attributes, nor do they capture complex attribute
mixing patterns during graph generation, making them unsuitable
for attributed graphs [1, 18, 41].

3 Attributed Vertex Replacement Grammars
3.1 Preliminaries
Labeled Attributed Multigraphs. A labeled attributed multi-
graph is a 5-tuple 𝐻 = ⟨𝑉 , 𝐸, 𝜅, 𝐿,A⟩ where 𝑉 is the set of vertices;
𝐸 ⊆ 𝑉 ×𝑉 is the set of edges; 𝜅 : 𝐸 ↦→ Z+ is a function assigning
multiplicity to edges; 𝐿 is the set of labels on nodes; andA : 𝑉 ↦→ 𝐿

is a function mapping nodes to attribute values in 𝐿. By default,
each edge has a multiplicity of 1. Although our model can be used
for directed graphs, the present work treats all graphs as undirected
for clarity of prose and illustration. Attributes can be internal, based
on the graph topology like node degree, or external, based on exter-
nally observed parameters, such as age or gender. We only focus on
discrete attributes for simplicity, but these models can usually be
extended relatively easily to handle continuous values. We use |A|
to denote the number of unique attribute values, so for the graph
in Fig. 1(A), |A| = 2 because it contains two different types/colors
of nodes: blue and pink.
Assortativity. Assortativity functions permit us to quantify the
nature of mixing patterns of attributes in networks. In this work, we
adopt the definitions proposed by Newman [26]. High assortativity
values represents homophily, the birds-of-a-feather principle [24],
where nodes are likely to connect to nodes with similar attributes.
Typically graphmodelers are interested in degree assortativity. That
is, the assortativity of a network where node degrees were consid-
ered to be attributes. In fact, in much of the related literature, the
term assortativity is generally taken to imply degree assortativity.
However, in the present work, we endeavor to be precise when
referring to the domain. Table 1 describes 12 datasets that are used
as the experimental corpora in the present work. Each dataset is
labeled with the number of nodes |𝑉 |, edges |𝐸 |, and number of
unique attributes |A|; as well as the degree assortativity 𝜌deg and
external attribute assortativity 𝜌attr.
Normalized Dasgupta Cost (NDC). We judge the goodness
of a dendrogram D obtained from hierarchical graph clustering
algorithms using the (𝑁𝐷𝐶) metric defined below [12].

𝑁𝐷𝐶 (D,𝐺) =
∑
(𝑢,𝑣) ∈ 𝐸 |leaves(LCA(𝑢, 𝑣,D))|

|𝑉 | · |𝐸 | (1)



where |leaves(LCA(𝑢, 𝑣,D))| is the number of leaves in the subtree
rooted by lowest common ancestor (LCA) of nodes 𝑢 and 𝑣 . A good
dendrogram D is expected to have a low cost because connected
nodes in the graph should share an LCA lower down in the tree.

3.2 The AVRG Formalism
An Attributed Vertex Replacement Grammar (AVRG) is a 4-tuple
𝐺 = ⟨Σ,Δ,P,S⟩ where Σ is the alphabet of node labels; Δ ⊆ Σ is
the alphabet of terminal node labels; P is a finite set of productions
rules (R) of the form 𝑋 → (𝑅, 𝑓 ), where 𝑋 is a left-hand side (LHS)
consisting of a nonterminal node (i.e., 𝑋 ∈ Σ \ Δ) with a size 𝜔 ;
and the tuple (𝑅, 𝑓 ) represents the right-hand side (RHS) of the
production rule, where 𝑅 is a labeled attributed multigraph with
terminal and possibly nonterminal nodes, and 𝑓 ∈ Z+ is the rule
frequency, i.e., the number of times it appears in the grammar; and
S is the starting graph 0 , a nonterminal of size 0.

Fig 1(B) shows an example AVRG with four rules. Each rule con-
tains an LHS and RHS. Squares containing numbers are nonterminal-
nodes that can be replaced by a rule’s RHS. Colored nodes on the
RHS subgraphs represent terminal nodes from the input graph. Ev-
ery node in 𝑅 is labeled by the number of boundary edges adjacent
to it in the original graph. The sum of boundary degrees on the
RHS is defined as 𝜔 and used to label the LHS.

Incorporating attributes in the formalism introduces new chal-
lenges in both extraction and generation; we elaborate next.

4 Extracting AVRGs
At a high level, our goal in the extraction process is to identify small
but meaningful building blocks of a graph while also keeping track
of how they can be pieced together. One way to find such building
blocks would be to exhaustively enumerate all possible subgraphs
up to a certain size, but this quickly becomes infeasible for even
medium-sized graphs. We opt to use a dendrogram obtained from a
hierarchical clustering algorithm to help us find the building blocks
to make our model scalable for large graphs. This works well in
practice because real-world graphs are usually self-similar across
multiple scales, and therefore their nodes can be decomposed into
clusters in a hierarchical fashion [34]. Once we discover the blocks,
we extract grammar rules and contract both the graph and the
dendrogram. We repeat this extraction and contraction process
until the graph is empty. It is important to note that we only run
the clustering algorithm once at the beginning and not every time
the graph gets updated.

4.1 Selecting a Good Clustering Algorithm
We select 7 popularly used hierarchical graph clustering algorithms:
conductance based bisection (Conductance) [17], spectral clustering
(Spectral) [27], Hyperbolic Hierarchical Clustering (HyperHC) [8],
Leiden [49], Louvain [6], Infomap [37], and recursive label prop-
agation (LabelProp) [33] algorithms. We run these algorithms on
the graphs described in Tab. 1 and obtain dendrograms. For every
dendrogram, we calculate its Normalized Dasgupta Cost as defined
in Eq. 1, group on clustering algorithm (i.e., average across datasets),
and plot the mean cost and 95% confidence interval (in blue) in Fig. 5.
We adopted the formalism from Sikdar et al. to calculate the de-
scription length [41] and the inverse compression ratio, i.e., the
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Figure 2: One iteration of the rule extraction and graph com-
pression process. (A) Graph 𝐻 . (B) 𝜂∗ = 𝜂3 in D. (C) 𝑉𝜂3 = {c, d,
e}, boundary edges are drawn in red. (D) Extracted grammar
rule. (E) New, reduced graph 𝐻 ′ with the new nonterminal 𝑋
of size 5. (F) Updated dendrogram D ′.

ratio of the description length of a grammar and the input graph,
such that lower is better. The mean inverse compression ratio and
95% confidence interval are plotted (in red) in Fig. 5 alongside the
Normalized Dasgupta cost. We find that Conductance, Louvain,
and Leiden perform best on average, so we down-select these three
clustering algorithms for the next steps.

4.2 Selecting a Suitable Internal Tree Node
Let𝑇 = {𝜂1, · · · , 𝜂𝑘 } be the set of internal nodes in the dendrogram
D. We observe that the leaves of a subtree rooted at an internal
node 𝜂𝑖 ∈ 𝑇 correspond to a subset of vertices of the𝐻 , i.e.,𝑉𝜂𝑖 ⊆ 𝑉 .
For example, in Fig. 2(A), 𝑉𝜂3 = {𝑐, 𝑑, 𝑒} and let 𝐻𝜂 be the subgraph
induced by 𝑉𝜂 on 𝐻 . Considering each internal node is not partic-
ularly helpful, especially in large graphs, given the overlap in the
subgraphs induced by a tree node and its ancestors. Therefore, our
goal is to determine a strategy that selects a particular tree node
𝜂∗ from 𝑇 that creates small but meaningful grammar rules. So, let
𝑠 be a function 𝑠 : 𝑇 ↦→ R which assigns scores to individual tree
nodes, and 𝑇 ∗ ⊆ 𝑇 be the set of the lowest scoring tree nodes, i.e.,
𝑇 ∗ = argmin𝜂∈𝑇 {𝑠 (𝜂)}. Now, depending on the scoring function
and the state of the current dendrogram,𝑇 ∗ may contain more than
one optimal tree node, in which case we need a selection policy.

The most straightforward policy would be to pick a tree node
at random from 𝑇 ∗. A slightly more sophisticated policy would
consider scoring functions that operate based on the subtree’s size.
In this approach, we introduce a new parameter 𝜇 ∈ Z+. Our goal is
to extract rules where the RHS subgraphs have exactly (or nearly)
𝜇 nodes. This aligns with our goal of finding small but meaningful
rules from the input graph. A simple scoring function that enforces
the size-based approach would be 𝑠 (𝜂𝑖 ) = |𝑉𝜂𝑖 | − 𝜇.

Once we pick the best tree node 𝜂∗ ∈ 𝑇 ∗, we proceed to extract
a grammar rule R that we then add to grammar 𝐺 .

4.3 Extracting an AVRG Rule
Let 𝐻𝜂∗ = (𝑉𝜂∗ , 𝐸𝜂∗ ) be the subgraph induced by 𝑉𝜂∗ on 𝐻 , where
we copy over the corresponding attribute values from 𝑉 to 𝑉𝜂∗ ,
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Figure 3: Set of all grammar rules obtained from the dendro-
gram D for graph 𝐻 from Fig. 2(A). Note some tree nodes
like 𝜂4 and 𝜂5 produce the same rule.

and 𝐸𝜂∗ = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉𝜂∗ ∧ (𝑢, 𝑣) ∈ 𝐸}. Let 𝐸∗cut = {(𝑢, 𝑣) |𝑢 ∈
𝑉𝜂∗ ∧ 𝑣 ∈ 𝑉 } be the set of edges, called boundary edges, that span
from 𝐻𝜂∗ to 𝐻 , and let b = [𝑏1 𝑏2 · · · 𝑏 |𝑉𝜂∗ |]

𝑇 be the vector of
boundary degrees for each node 𝑣 ∈ 𝑉𝜂∗ . The boundary degree (𝑏𝑖 )
of a node 𝑣𝑖 stores the number of boundary edges to which 𝑣𝑖 is
adjacent, i.e., 𝑏𝑖 = |{(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐸∗cut ∧ (𝑢 = 𝑣𝑖 ∨ 𝑣 = 𝑣𝑖 )}|, and
therefore

∑
b = |𝐸∗cut | = 𝜔 . We include the boundary degree as an

additional attribute for each node in 𝐻𝜂∗ .
We now have all the ingredients needed to create a grammar rule.

Let R = 𝑋 → (𝑅, 𝑓 ) be an AVRG rule, where 𝑋 is a nonterminal
of size 𝜔 , 𝑅 is the graph 𝐻𝜂∗ , and the frequency 𝑓 = 1. Now, if R
is a new rule, we add it to the grammar 𝐺 ; otherwise, we update
the frequency of the existing rule in 𝐺 that is isomorphic to R. For
example, we obtain 6 unique grammar rules from the dendrogram
D in Fig. 2(B) which are shown in Fig. 3.
Rule Isomorphism. Two grammar rules R1 and R2 are iso-
morphic if and only if (a) their left-hand side nonterminals are of
the same size, i.e., 𝜔1 = 𝜔2, and (b) the RHS attributed graphs are
isomorphic. We use the VF2 algorithm for this calculation [11].

4.4 Updating the Data Structures
After extracting the grammar rule R, we update both the current
graph 𝐻 and dendrogram D to prevent the same set of nodes from
directly participating in future rules.
Updating the Graph. In the current graph𝐻 , first we remove all
the nodes in𝑉𝜂∗ and its corresponding edges. Then, we introduce a
new nonterminal node 𝑋 ∗ labeled with 𝜔 (from the rule extraction
step). We connect 𝑋 ∗ to the rest of the graph through the set of
cut edges 𝐸∗cut in 𝑅 where the endpoints in𝑉𝜂∗ are redirected to 𝑋 ∗.
Note, this may lead to the creation of multi-edges in the new graph
𝐻 ′, which is now strictly smaller than 𝐻 .
Updating the Dendrogram. With a new (smaller)𝐻 ′, it may be
prudent to re-run the clustering algorithm and generate a new den-
drogram. However, our initial experiments found that re-clustering
is time-consuming and rarely results in significant changes to the
dendrogram. Instead, we modifyD by replacing the subtree rooted
at 𝜂∗ with nonterminal node 𝑋 ∗ labeled with 𝜔 . Finally, we set
𝐻 ← 𝐻 ′ and repeat the tree node selection and rule extraction
processes until the dendrogram is empty.

In Fig. 2 we continue the running example and illustrate the
grammar rule extraction and graph and dendrogram contraction
processes. The input graph (A) has 9 nodes, 16 edges, and each
node is colored blue or pink. A dendrogram drawn from clustering
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Figure 4: Grammar Rules for our example graph 𝐻 using the
dendrogram D in Fig. 2(B). The tree nodes 𝜂3, 𝜂2, 𝜂8, 𝜂6, and
𝜂1 where selected in order to obtain these rules. Note that 𝜔
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Error bars represent 95% confidence interval. Lower is better
for both axes. Red dashed line at y=1 indicates no model
compression. We pick Conductance, Leiden, and Louvain al-
gorithms for further consideration.

of the graph is drawn in (B) from which 𝜂3 is selected by using
the size-based scoring function described in Sec. 4.2 with 𝜇=3. The
subgraph representing the subtree rooted at 𝜂3 is highlighted in
(C) and contains 5 boundary edges (drawn in red). (D) illustrates
a new grammar rule constructed with size-five LHS and an RHS
copied from the highlighted subgraph under 𝜂3. Finally, the ex-
tracted subgraph and selected subtree are contracted and replaced
by the nonterminal node from the LHS of the newly created rule
in (E) and (F). This process then repeats until the dendrogram is
empty, yielding us the set of rules shown in Fig. 4.

Before discussing generation, we examine AVRGs extracted from
two real graphs with distinct attribute mixing patterns.

4.5 Case Study I: Examining AVRG Rules
Cora. The citation network consists of about 2500 papers spread
across 7 different fields of Machine Learning, which are represented
by colors on the nodes. In Fig. 6(A), we observe that not all classes
are represented equally; for example, 27% nodes are red while only
5% nodes are blue. The edge mixing patterns based on the node
attributes in Fig. 6(B) reflect strong homophily, with most edges
spanning between papers (nodes) in the same field (color), as ev-
idenced by high values on the main diagonal as well as the high
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Figure 6: Cora. (A) Proportion of nodes in each class (color).
(B) Attribute mixing matrix, each cell represents the percent-
age of edges with the corresponding colored endpoints. High
numbers in the main diagonal and lack of off-diagonal edges
indicate strong homophily. (C) The six most frequent rule
RHS subgraphs of the extracted AVRG.

value of 𝜌attr = 0.764. We expect the RHS subgraphs of the gram-
mar rules extracted from Cora to capture this phenomenon. Indeed,
in Fig. 6(C), we find that each of the 6 most frequent subgraphs
consists of nodes belonging to the same class (color). Moreover, the
top three rules all involve the red nodes, which is expected since
22% of the edges in the network span between red nodes.
Chameleon. The Chameleon Wikipedia network consists of
about 2500 webpages on Wikipedia, which fall under the topic
Chameleon. The nodes are classified into 5 (almost) quantiles based
on their averagemonthly traffic, whose distribution is shown in Fig. 7(A).
The edge mixing patterns, in this case, is quite intriguing. We see
that nodes lying in the same quantile are not necessarily likely to
be more connected to each other than others, resulting in a more
uniform distribution of edges as seen in Fig. 7(B), resulting in the
low attribute assortativity score of 0.032. The 6 most frequent RHS
subgraphs in the grammar rules reflect this disparity too; all but
one rule consists of nodes from different classes, as seen in Fig. 7(C).

Thus, it is clear that the grammar rules reflect themixing patterns
observed in the input graph, which empirically validates our ex-
traction procedure’s efficacy. Additionally, we can use the grammar
rules to generate graphs which we describe next.

5 Graph Generation with AVRGs
The grammar 𝐺 encodes information about the original graph 𝐻 ,
which can be used for various purposes. One compelling way to
determine the faithfulness of a graph model is to use it to generate
graphs. How closely do these generated graphs resemble the origi-
nal one? Is the model able to capture the nuances of mixing patterns
across both degrees and attributes? To answer these questions, we
first describe a stochastic generative process that repeatedly applies
rewriting rules to generate graphs.

Any new graph𝐻 ′ starts with S, a size 0 nonterminal. An AVRG
extracted using the extraction process outlined above is guaranteed
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Figure 7: Chameleon. (A) Proportion of nodes in each class
(color). (B) Attribute mixing matrix, each cell represents the
percentage of edges with the corresponding colored end-
points. Almost uniform numbers in the matrix indicates
heterophily. (C) The six most frequent rule RHS subgraphs
of the extracted AVRG.

to have a single size-0 starting nonterminal node because the gram-
mar extraction only terminates when the root of the dendrogram
covers all the nodes in the graph. Then grammar rules are applied
stochastically according to 𝑓 on available nonterminal nodes.

Precisely, each step of the generation process consists of three
sequential parts: (a) choosing a nonterminal node from the current
graph 𝐻 ′, (b) choosing a suitable grammar rule from the grammar
𝐺 , and (c) replacing the selected nonterminal in 𝐻 ′ with the RHS
subgraph of the selected rule, and rewiring it to the rest of the
graph. This process continues until no more nonterminals remain
or until some predetermined graph size is reached.

5.1 Selecting a Grammar Rule
We pick a nonterminal 𝑋 of size 𝜔 at random from 𝐻 ′ and find the
set of grammar rules with the same LHS nonterminal, i.e., of size 𝜔 .
From that set of rules, we select a rule R stochastically according
to frequency 𝑓 and connect the RHS into 𝐻 ′. This process prevents
overfitting to the input graph and enables the model to flexibly
generate diverse graphs that still resemble the original.

5.2 Choosing a Rewiring Policy
How the RHS is connected to the existing graphmatters. The degree
of the chosen nonterminal in 𝐻 ′ will always match its size, i.e., 𝜔 .
So, deleting 𝑋 from 𝐻 ′ will break exactly 𝜔 edges (called broken
edges) that then need to be rewired to nodes in the RHS.

Recall that each node in the RHS subgraph of 𝑅 was labeled with
boundary degree 𝑏𝑖 during extraction, and the sum of all boundary
degrees is equal to 𝜔 . We will use this helpful property to guide
the edge rewiring process. Doing so helps us preserve the local
connectivity patterns across the different regions of the graph,
thereby increasing the fidelity of the output. We consider three
possible rewiring policies in the current work: (1) random rewiring,
(2) mixing matrix, and (3) local greedy.
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Figure 8: Rewiring policies over threemetrics. Lower is better.
We select the Mixing Matrix rewiring policy.

Random Rewiring. Each node 𝑖 in the RHS subgraph of 𝑅
receives exactly 𝑏𝑖 edges at random from the set of broken edges.
Mixing Matrix. If we consider graph generation as a kind of
reverse extraction process, from the top of the dendrogram mov-
ing downwards, then we can think of each RHS as introducing
a new region/community of the graph–first at a macro-level and
progressively refining the graph structure one rule at a time.

As their name implies, terminal nodes and their induced sub-
graph stay constant once they are introduced. We, therefore, distin-
guish two sets of terminal nodes: (1) terminal nodes in 𝐻 ′, and (2)
terminal nodes in the RHS subgraph of a rule that is being applied.

From among the terminal nodes in 𝐻 ′, we select those which
have edges that are broken. Then from the terminal nodes in the
RHS of the rewriting rule, we select terminal nodes that have non-
zero boundary degrees. Once we have identified these two sets,
we use a Chung-Lu style edge rewiring policy that matches edges
based on the attribute mixing matrix from the input graph. For
instance, if red nodes are twice as likely to connect to other red
nodes as blue nodes in the input graph, we will use that probability
to match red and blue nodes similarly during the rewiring process
for the broken edges between the two terminal node sets.
Local Greedy. We compute an error function for each possible
rewiring between two terminal nodes and greedily pick a rewiring
configuration that minimizes the local error:

𝜖 = 𝛽 · |𝜌 ′deg − 𝜌deg | + (1 − 𝛽) · |𝜌
′
attr − 𝜌attr | (2)

where 𝜌deg and 𝜌 ′deg is the degree assortativity before and after
the application of the rewiring policy, likewise for 𝜌attr. We select
𝛽 ∈ {0, 0.5, 1}, which mediates the weight between the two, and call
the policies Greedy-Attr, Greedy-50, and Greedy-Deg respectively.
Selecting a Rewiring Policy. Among the many rewiring poli-
cies available to our model, it is crucial to choose one that generates
graphs that contain mixing patterns that are faithful to the original
graph. Based on the results from previous experiments, we choose

the Leiden clustering and a size-based node selection strategy with
𝜇 = 5. Then we test the five rewiring policies with ten repetitions
on each dataset in Table 1.

Figure 8 illustrates the individual results for each trial and a
corresponding box and whisker plot for 𝜆-distance [53], Δ𝜌deg, and
Δ𝜌attr i.e., absolute difference between the degree and attribute as-
sortativity of the generated and original graphs, respectively (lower
is better). Given the lack of a clear winner among the rewiring
policies, we choose the mixing matrix one in the remainder of this
work, given its flexibility.

5.3 Observing the Generation Dynamics
Next, we inspect the graph generation process. Observing the
growth of the generator provides a unique look at its underlying
dynamics. Despite the temptation, it is important to not think of
this generation process as a temporal one, but rather as a top-down
filling-out. As new nodes and edges are added, the size of the graph
grows, and we expect that the underlying topological and attribute
mixtures will converge near the correct values.

Four views of graph generation on the Texas graph are shown
in Fig. 9. In this example, the AVRG was extracted from the Texas
graph using Leiden clustering. Rules were extracted using the size-
based scoring policy (𝜇 = 5), breaking ties randomly. In this example,
the graph generator used themixingmatrix rewiring policy andwas
requested to grow to 250 nodes instead of 183, i.e., we intentionally
specified the new graph to be larger than the original. The difference
between blue and red points shows the difference between the
entire generated graph (treating terminal and nonterminal nodes
as the same) versus just the terminal graph (ignoring nonterminal
nodes and edges adjacent to nonterminal nodes). These values will
eventually converge. When there are no more nonterminals, graph
generation ceases.

Green horizontal lines in Fig. 9 show the graph metrics from the
original graph (except 𝜆-distance, where 0 means perfect match).
In this example, we asked the generative model to produce a graph
with an extra 67 nodes. As rewriting rules are applied, the number
of nodes gradually approaches 250. Likewise, the graph metrics
converge to near the values of the input graph. The graph metrics
remain relatively stable once the input size is reached–indicated
by the vertical black line. This example illustrates an important
property of AVRGs: they can generate graphs of any large size, yet
they continue to resemble the input graph.

6 Graph Generation Results and Findings
We performed a thorough set of experiments that compared the
graph generation performance of the AVRG model against several
state-of-the-art graph models. Note that, just like in other graph
grammar models, applying grammar rules in a tree-ordering over
the dendrogram will permit the generation of an isomorphic graph
to the input graph. However, this property of AVRGs is not par-
ticularly helpful in generating null graphs. Instead, our goal was
to generate new graphs and determine if these new graphs shared
similar topological and attribute properties with the input graphs.
Methodology. We compared AVRGs against seven state-of-the-
art graph generators. Many existing graph generators cannot handle
attributed graphs, and many attributed graph generators do not
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Figure 9: The growth of a graph (Texas) during generation.
The green line indicates the corresponding value in the orig-
inal graph. The generated graph can be made to grow to an
arbitrary size; the vertical black line represents the size of
the input graph. This example shows how the metrics of the
generated graphs slowly approach and eventually converge
near ideal value as the generated graph approaches the origi-
nal graph’s size.

Table 1: Dataset summary statistics. |𝑉 |: # of nodes, |𝐸 |: # of
edges, |A|: # of unique attribute values, 𝜌deg: degree assorta-
tivity coefficient, 𝜌attr: attribute assortativity coefficient.

Name |V | |E | |A | 𝜌deg 𝜌attr

Polbooks 105 441 3 −0.128 0.723
Football 115 613 12 0.162 0.608
Texas 183 279 5 −0.270 −0.294
Cornell 183 277 5 −0.249 −0.079
Wisconsin 251 450 5 −0.193 −0.173
Airports 1,183 22,459 4 0.168 0.356
Polblogs 1,222 16,714 2 −0.221 0.811
Citeseer 2,110 3,668 6 0.007 0.664
Chameleon 2,277 31,371 5 −0.200 0.032
Cora 2,485 5,069 7 −0.071 0.764
Squirrel 5,201 198,353 5 −0.227 0.007
Film 7,600 26,659 5 −0.047 0.003

scale to large sizes. The AVRG model can easily scale to extremely
large graphs, but we opt to compare against other attributed mod-
els necessitating smaller graphs in this evaluation. Specifically, we
compared against graph neural network models NetGAN [7], Graph
Autoencoders [22], and Variational Autoencoders [42].We also com-
pared with classical, non-neural models such as CELL [35], the De-
gree Corrected Stochastic Block Model (DC-SBM) [20], AGM [32],
and the base Chung-Lu model [10]. We used the best-performing
hyperparameter settings for each of the baseline models.

All experiments were repeated ten times. The mean average
of each metric for each model is reported. The 95% confidence
intervals are not shown for clarity but usually lie within 5% of the
mean. The AVRG model used Leiden clustering algorithm to build
the dendrogram, the size-based node selection strategy with 𝜇 = 5,
and the Mixing Matrix rewiring policy for all results in this section.
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Figure 10: Results on matching simulated scale-free graphs:
AVRG best hugs the assortativity curve (CELL is a close con-
tender) across the spectrum, while other models struggle.

6.1 Case Study II: CABAM Simulations
The CABAM model simulates scale-free graphs with varying at-
tribute assortativity via a modified, attribute-aware preferential
attachment process [38]. We generate graphs with 500 nodes and
degree distribution power-law exponent ∼3, and vary the inter-
class assortativity (𝑝𝑐 ) in increments of 0.05. Figure 10 shows that
for a majority of the attribute assortativity space, AVRG with the
Hyperbolic hierarchical clustering (Leiden produces slightly worse
results) can produce graphs matching the true values. We observe
that AVRGs and CELL are the standout performers, both tightly
hugging the assortativity curve. Other graph models, including
NetGAN (surprisingly), do poorly on this task. These results demon-
strate that AVRG is capable of handling graphs across the spectrum
of attribute assortativity.

6.2 Real-World Graphs
We evaluated the generation quality of the models by comparing
both topological and attribute similarities with the original graphs.

We choose 𝜆-distance to compare the topological fidelity in-
stead of comparing degree and PageRank distributions because it is
known to be more sensitive to topological variations [53]. We also
computed the absolute difference between degree and attribute as-
sortativity values to quantify similarity in mixing patterns. Finally,
we counted all connected and colored 2, 3, and 4-node graphlets (e.g.,
edges, triangles, squares, kites) [52]. We used the inverse of Pear-
son’s correlation coefficient to compare each colored graphlet count
vector (the inverse is taken so that lower is better–consistent with
our other measures) as a way of measuring higher-order attribute
mixing patterns. Because of the enormous number of possible col-
ored graphlets, some of these counts could not be computed for the
larger graphs.

The results on all 12 input graphs are aggregated in Tab. 2. Some
models failed due to a combination of memory and model fitting
issues. However, we can make the following observations.

CELL and AVRG are the standout performers, both consistently
finishing in the top 2. CELL, being the state-of-the-art, performed



Table 2: Graph generation performance. Lower is better. 95% confidence intervals are not shown for clarity. The best and second
best performing models are marked in boldface and underline respectively. Failures are marked with –. 𝜆-dist: topological
similarity, Δ𝜌deg and Δ𝜌attr: difference in degree and attribute assortativities. 1 - 𝑟 : Inverse Pearson Correlation Coefficient of
colored graphlet counts. AVRG ranks in the top-2 for at least one metric across all datasets except Cora.

Polbooks Football Texas Cornell

𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟

AGM 0.087 0.062 0.058 0.165 – – – – – – – – – – – –
CL 0.069 0.075 0.729 1.172 0.178 0.176 0.618 1.192 0.265 0.097 0.276 0.894 0.226 0.091 0.058 0.723
DC-SBM 0.194 0.037 0.115 1.154 0.254 0.142 0.197 1.129 0.221 0.051 0.253 1.366 0.208 0.056 0.052 1.305
NetGAN 0.192 0.030 0.112 0.101 0.189 0.159 0.170 0.261 0.203 0.049 0.173 0.822 0.153 0.023 0.037 0.453
GAE 3.014 0.093 0.280 – 2.430 0.208 0.444 – 5.584 0.592 0.326 – 5.916 0.671 0.062 –
GVAE 3.826 0.081 0.259 – 3.454 0.199 0.503 – 6.433 0.754 0.302 – 6.235 0.754 0.093 –
CELL 0.058 0.164 0.069 0.161 0.125 0.086 0.103 0.198 0.132 0.038 0.048 0.591 0.085 0.021 0.032 0.234
AVRG 0.229 0.080 0.171 0.148 0.051 0.056 0.022 0.075 0.118 0.036 0.030 0.504 0.081 0.031 0.042 0.346

Wisconsin Airports Polblogs Citeseer

𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟

AGM – – – – 0.185 0.211 0.048 0.021 0.224 0.142 0.024 0.006 0.022 0.021 0.012 0.054
CL 0.195 0.070 0.147 0.748 0.154 0.226 0.359 0.654 0.150 0.159 0.814 1.125 0.015 0.026 0.669 1.050
DC-SBM 0.150 0.035 0.139 1.137 0.523 0.025 0.048 0.650 0.291 0.023 0.032 1.220 0.018 0.022 0.314 1.023
NetGAN 0.198 0.035 0.115 0.461 0.589 0.148 0.152 0.021 0.323 0.154 0.367 0.186 0.032 0.051 0.602 0.545
GAE 6.595 0.451 0.182 – 13.518 0.029 0.154 – 16.025 0.167 0.218 – 20.260 0.027 0.612 –
GVAE 7.216 0.547 0.190 – 13.685 0.226 0.183 – 16.079 0.142 0.222 – 20.764 0.059 0.609 –
CELL 0.111 0.025 0.029 0.110 0.194 0.011 0.038 0.650 0.107 0.026 0.028 0.003 0.024 0.058 0.200 0.073
AVRG 0.136 0.025 0.020 0.244 0.447 0.041 0.063 0.021 0.357 0.083 0.283 0.123 0.018 0.034 0.263 0.101

Chameleon Cora Squirrel Film

𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟 𝜆-dist Δ𝜌deg Δ𝜌attr 1 - 𝑟

AGM 0.196 0.125 0.036 – 0.026 0.032 0.013 0.255 0.521 0.083 0.008 – 0.047 0.020 0.004 –
CL 0.174 0.129 0.035 – 0.015 0.046 0.766 1.114 0.472 0.095 0.007 – 0.039 0.019 0.003 –
DC-SBM 0.361 0.017 0.012 – 0.024 0.020 0.292 1.078 0.835 0.034 0.002 – 0.030 0.008 0.004 –
NetGAN 0.332 0.129 0.029 – 0.058 0.036 0.710 1.089 1.041 0.219 0.008 – – – – –
GAE – – – – 22.364 0.066 0.688 – – – – – – – – –
GVAE – – – – 21.860 0.058 0.686 – – – – – – – – –
CELL 0.260 0.003 0.017 – 0.022 0.004 0.132 0.067 0.303 0.030 0.001 – 0.023 0.001 0.004 –
AVRG 0.072 0.010 0.007 – 0.026 0.042 0.374 0.263 0.356 0.067 0.006 – 0.025 0.006 0.003 –

admirably across all the datasets. AVRG does particularly well on
disassortative graphs like Texas, Wisconsin, and Chameleon, in
capturing topological and attribute mixing patterns. NetGAN, DC-
SBM, AGM, and CL perform similarly well, while the autoencoders
fail to reproduce the graphs faithfully.

7 Conclusions and Future Work
The present work describes the attributed vertex replacement gram-
mar (AVRG) model inspired by the context-free grammar formalism
widely used in compilers and natural language processing. We de-
scribed how an AVRG can be extracted from a hierarchical cluster-
ing of an attributed graph and then show that themodel successfully
encodes local topological structures. Starting with an empty graph,
if we apply grammar rules stochastically, the model can generate a
new graph. We show that the newly generated graphs are similar to
the input graph, both topologically and in attribute mixing patterns.

Despite their straightforward design (i.e., lacking supervision and
a rich neural architecture), we demonstrate that AVRGs can often
surpass state-of-the-art deep graph neural network generators’
performance. We further demonstrate that the attributed graph
rewriting rules encoded by the grammar can be interpreted to
understand the local mixing patterns of the graph and how these
substructures are pieced together.

These results open an exciting avenue for further exploration
into attributed rewriting rules. One of the principal strengths of
AVRGs is their ability to find the same rule repeatedly. For attributed
graphs, combining identical grammar rules via rule isomorphism
becomes less likely. As the number of unique attributes grows,
the model size is likely to grow as well. Combining similar rules
using graph kernel methods or other formalisms borrowed from
formal language theory may be a particularly compelling avenue
for further research. Additional work is also needed to extract ac-
tionable knowledge and interpret the simple patterns encoded in
the grammar. Such tools could also be used to better understand
specific graph datasets such as knowledge graphs, biological net-
works, and other complex systems containing a rich mixture of
attributes and their patterns. We also intend to apply these tech-
niques to solve additional downstream tasks like link prediction,
graph summarization, and other critical graph modeling tasks.
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