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Abstract— The growing gap between the massive amounts
of data generated by petascale scientific simulation codes and
the capability of system hardware and software to effectively
analyze this data necessitates data reduction. Yet, the increasing
data complexity challenges most, if not all, of the existing data
compression methods. In fact, lossless compression techniques
offer no more than 10% reduction on scientific data that we
have experience with, which is widely regarded as effectively
incompressible. To bridge this gap, in this paper, we advocate a
transformative strategy that enables fast, accurate, and multi-fold
reduction of double-precision floating-point scientific data. The
intuition behind our method is inspired by an effective use of pre-
conditioners for linear algebra solvers optimized for a particular
class of computational “dwarfs” (e.g., dense or sparse matrices).
Focusing on a commonly used multi-resolution wavelet compres-
sion technique as the underlying “solver” for data reduction we
propose the S−preconditioner, which transforms scientific data
into a form with high global regularity to ensure a significant
decrease in the number of wavelet coefficients stored for a
segment of data. Combined with the subsequent EQ−calibrator,
our resultant method (called S-Preconditioned EQ-Calibrated
Wavelets (SPEQC–WAVELETS)), robustly achieved a 4- to 5-
fold data reduction—while guaranteeing user-defined accuracy
of reconstructed data to be within 1% point-by-point relative
error, lower than 0.01 Normalized RMSE, and higher than
0.99 Pearson Correlation. In this paper, we show the results
we obtained by testing our method on six petascale simulation
codes including fusion, combustion, climate, astrophysics, and
subsurface groundwater in addition to 13 publicly available
scientific datasets. We also demonstrate that application-driven
data mining tasks performed on decompressed variables or their
derived quantities produce results of comparable quality with
the ones for the original data.
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I. INTRODUCTION

Data reduction is quickly becoming a top-notch priority in
the field of exascale science. Scientific simulation codes like

Flash, GTS, S3D, and XGC that are scalable to petascale
supercomputers produce on the order of tera- to peta-byte
datasets per run. As these simulations codes are allocated only
a limited number of hours to perform the simulation at the
scales of hundreds and thousands of cores, to allievate the time
spent on writing the data out, compression becomes a necessity
rather than an option. However, existing data compression
methods are hardly suitable for compressing random and noisy
spatio-temporal floating-point scientific data, and thus have
lead to the belief that this type of data is uncompressible [1].
In fact, lossless compression techniques [2], [3], [4], [5] that
are specifically designed for fast online compression [2], [4]
are capable of reducing such data by no more than 10% of its
original size.

In an attempt to alleviate this problem, Lindstrom and
Isenberg [4] introduced a lossy compression method that
functions by converting floating-point values to integers and
recording the delta between a predictive estimator and the
actual data points. They provide the option of discarding least
significant bits of the delta and making the compresion lossy.
However, to achieve the same compression rate achieved using
the method proposed in this paper, we would need to discard
the majority of the bits (making the resulting compression very
lossy and inaccurate).

More traditional multi-resolution techniques like Wavelet-
based compression have been primarily used for visualization,
geometric modeling, signal denoising and filtering, feature
preservation and selection, multi-level spatial data-mining, and
clustering (see, for example, [6], [7], [8]). In the context of
lossy data compression, such techniques have been targeting
specific types of scientific data, such as 1-dimensional ECG
signals [9], 2-dimensional piecewise smooth images [10], [11],
3-dimensional hyperspectral images [12]), and others [13],
[14].

However, no effective compression techniques that function



TABLE I
CHARACTERISTICS OF SIMULATION OUTPUT DATA SETS FROM SIX APPLICATIONS

Code Application Variable(s) Is Double? Reference
S3D Combustion Temperature, Velocity No [15]
XGC1 Fusion Plasma Edge Flux, Temperature Yes [16]
GTS Fusion Plasma Core Density, Potential Yes [17]
GCRM Climate Vorticity No [18]
SPH Smoothed Particle Hydrodynamics Density No [19]
Flash Astrophysics Velocity Yes [20]

TABLE II
SUMMARY OF GTS AND XGC OUTPUT DATA BY DIFFERENT CATEGORIES.

Category Write Frequency Read Access Size/Write Total Size
C&R Every 1-2 hours Once or never A few TBs ≈TBs

A Every 10th time step Many times A few GBs ≈TBs
V&V Every 2nd time step A few times A few MBs ≈GBs

without directly exploiting both a specific spatial and temporal
correlation of data in the context of any underlying data model
have been reported in literature, to the best of our knowledge.
These three major requirements are crucial for any in-situ (i.e.,
in-tandem with the simulation code) data reduction scheme
that is communication-free, energy-efficient, and minimally-
disruptive to simulation codes. For simulation codes, meeting
the first requirement would eliminate inter-process communi-
cation; meeting the second requirement would avoid memory-
intensive global-context (across all time steps) processing; and
finally, meeting the third requirement would offer end-users a
desirable flexibility for utilizing the model optimized for their
simulation codes without considering the data model required
by the data reduction technique. To fill this niche, we propose
a method (called SPEQC–WAVELETS) that effectively meets
these needs, guarantees that user-specified accuracy constraints
are respected, and demonstrates negligible or no adverse effect
on subsequent data mining and analysis tasks performed over
the decompressed data.

II. MOTIVATING EXAMPLES

In this paper, most of the work done in the context of
in-situ data reduction is performed on results from several
scientific simulation codes, including GTS [17] and XGC1
[16] for particle-based simulations of fusion plasmas for
studying plasma micro-turbulence in the core and in the
edge, respectively, of magnetically confined fusion plasmas
of toroidal devices in nuclear reactors; S3D [15] for direct
numerical simulations of turbulent combustion, and others (see
Table I). For example, the Global Cloud Resolving Model
(GCRM) [18] is being designed to simulate both weather
and climate at cloud resolving scales in the sub 2km range.
Understanding behavior of clouds is of immense importance
and scientists will be interested in analyzing high temporal
frequency data that matches the lifecycle of clouds, ideally,
on the time scales in the order of minutes. However, tradeoffs
against bandwidth and storage capacity will be required. These
tradeoffs can be met through several techniques such as grid
sampling, high temporal frequency I/O for regions of interest,

and both lossless and lossy compression techniques.
The types of data produced by the simulation can be broadly

classsified into three types: (1) Checkpoint and restart (C&R)
data which is used to restart a simulation in the event of a
failure (2) Analysis (A) data which is used for performing
exploratory analytical processing and/ or visualization (3)
Verification and validation (V&V) data which is used to affirm
the smooth running of the simulation.

The analysis data is inherently lossy, as scientists resort to
skipping timesteps instead of saving every timestep, in order
to keep the data generated within manageable proportions.
Hence, this analysis can still tolerate some form of approx-
imation, unlike C&R data. Additionally this analysis data
is repeatedly accessed by scientists to perform exploratory
hypothesis testing, and visualization, and used by physics
analysis codes. Large-scale data reduction would thus make
the process of analysis much more efficient. Hence, this is the
main focus of SPEQC-WAVELETS.

III. METHOD

The intuition behind our method is inspired by the way
linear algebra problems are often being solved. Consider a
somewhat simplified example to illustrate the basic idea. If
one needs to find a determinant of a large matrix, then
transforming the matrix to an upper- or lower-diagonal form
would reduce a complex task of calculating the determinant
to a simpler task of multiplying the diagonal elements of
the transformed matrix. Likewise, if a matrix is known to be
sparse, then transforming the matrix to a block-diagonal form
would enable to decompose the same task into the product of
similar tasks but over smaller size matrices. Of course, for real
application matrices, an “ideal” block-diagonalization maybe
hard to obtain, and an approximation to the ideal with a few
non-zero elements off the diagonal blocks would require some
“re-calibration” to the approximated solution.

Thus, solving a linear algebra problem, such as the one
illustrated above, would require knowledge of the data
model/computational dwarf (e.g., sparse or dense matrix), the
preconditioner (e.g., diagonalization or block-diagonalization)



that would transform the original problem instance into the
instance, for which the target solver (e.g., calculation of the
determinant) offers the optimized performance for the given
dwarf, with a possible need for running a calibrator to adjust
the solution due to some impurities in the “ideal” problem
instance.

Algorithm 1: Data Reduction’s Framework
Input:
D—input data to be compressed.
S—window size.
Ppref—end user’s preferences of Pearson Correlation,
NRMSE and Relative Error per Point.
Output:
C—Compressed Data.
Window Set← Window Splitter(D, S).1

forall Window in Window Set do2

/* Window′ is preprocessed window,
C_Window is compressed window. */

{Window′, Index} ← S−preconditioner(Window)3

C ← {C, Index}4

C Window ← Adaptive Error-Bounding5

Iterator(Window′, Ppref )
C ← {C, C Window}6

/* QE is quantized errors for each
point in one window */

QE ← EQ−calibrator(C Window, Window′,7

Ppref )
C ← {C, QE}8

The SPEQCWavelets framework for double precision
floating-point scientific data reduction consists of four main
continuous procedures, which are illustrated in algorithm 1. In
this paper, we present a method that offers competative perfor-
mance to the traditional multi-resolution Wavelets-based solver
via innovations underlying the proposed S−preconditioner
and EQ−calibrator (both detailed in the sections below).
For the solver, we choose to utilize Quadratic Spline (QS)
W-Matrices Wavelet Transform [21], [22] for a number of
reasons. First, the inverse transformation can be efficiently
implemented [22]; second, this approach allows for efficient
processing of arbitrary length signals [22]; third, the QS
transformation has been demonstrated to performs better than
the D4 transformation [23], [24] for some types of signals;
finally, the quadratic MRA (Multi-Resolution Analysis) was
shown to be superior to the cubic one in both decomposition
and reconstruction times of semi-orthogonal spline wavelets,
while permitting greater accuracy for a corresponding number
of terms in the truncated IIR (Infinite Impulse Response) filters
used to perform decomposition [24], [23].

A. S−preconditioner

Considering a scientific data set as a linearized vector (or
signal) of floating-point double-precision values, we can char-
acterize the performance of wavelet transforms by the class

of functions that best approximate this signal; we could also
consider the signal in both the frequency and time domains.
Theoretically, the rapid decrease of the wavelet at the zero
frequency implies a rapid decrease of the wavelet coefficients
at small scale. Likewise, in terms of the time representation,
high global regularity of the underlying function and many
vanishing moments of the wavelet implies a rapid decrease in
the number of wavelet coefficients [25]. The higher number
of vanishing moments leads to a higher compression rate.

Equipped with such theoretical insights, we find that our
preconditioner should ideally transform the original signal
to the one that is best approximated by a function of high
global regularity. In this paper, we propose a preconditioner
(called the S−preconditioner) that sorts the original input
signal. Sorting will allow the data distribution in the spatial
domain to be transformed from a quickly oscillating signal
(Fig. 1, A) to a monotonously growing one (Fig. 1, B). The
idea behind this sorting pre-conditioner for a data reduction
technique is that Wavelet transforms of monotonously curved
functions can provide more accurate models than the original
random functions. Figure 1 presents the huge divergence in
how precisely (D) or inaccurately (C) the decoded lossy
compressed data approximates the original data when applying
Wavelet compression with and without the S−preconditioner
respectively.

(A) 

(B) 

(C) 

(D) 

Fig. 1. A slice of GTS Potential: (A) original signal; (B) sorted signal; (C)
decoded after Wavelets transformation of the original signal; and (D) decoded
after Wavelets transformation of the sorted signal.

B. Window Splitter

While the S−preconditioner benefits us in reducing the
number of Wavelet coefficients to store and enhancing the
accuracy of the reconstructed data, it also forces us to pay the
storage cost for saving the indices of the original data. Namely,
sorting the input vector will reorder the vector elements via
some permutation of its indices. Hence, we need to keep
track of the permuted index (Ip) so that we can assocate
the decompressed sorted vector back to the original vector
by using its correct index. Note that each index value of



the vector with N elements would require log2N bits of
storage. Thus, the vector length N is the only factor that
determines the storage requirements for the permuted index
Ip. Such a dependence brings a couple of issues. First, the
64-bit computer architecture constrains N ≤ 264. Otherwise,
the input vector V representing the linearized data has to be
split into smaller size vectors. Alternatively, one can find the
window size W0 that optimizes the overall compression ratio
of the compressed vector Vc defined by Equation 1:

CR(V ) =
|Vc|
|V |
× 100% (1)

For example, splitting the entire vector V into fixed-sized
windows of size W0 = 256 = 28 would require only one
byte to store an index of the vector element in each window,
and only Sdouble(Ip) = size(byte)

size(double) = 12.5% of the original
storage would be used for Ip index for double-precision data.
Likewise, for single-precision data, 25% of the original usage
would be used for the index (Ssingle(Ip) = size(byte)

size(float) =

25%). Table III illustrates such trade-offs along with the
overall storage requirement for keeping track of the index of
the sorted vector elements.

TABLE III
WINDOW SIZES WITH STORAGE COST FOR INDICES

Bytes per Index W0 Sdouble (%) Ssingle (%)
1 256 12.5 25
2 65, 536 25 50
3 16, 777, 216 37.5 75

C. EQ−calibrator

The S−preconditioner ensures accurate Wavelets-based ap-
proximation only on a per window basis but not on a per
point basis. As a result, in certain locations, the Wavelets-
estimated data deviates from the actual by a margin exceeding
the defined tolerance. To alleviate this problem, we next
optimize the SPEQC–WAVELETS’s performance in terms of
the percentage of the relative point-by-point error (ε) at each
index i between the original vector V and the Wavelet-decoded
vector V ′ defined by Equation 2:

εi =
vi − v′i
v′i

× 100%. (2)

While the number of such location points is reason-
ably low due to accurate fitting achieved by Wavelets on
S−preconditioned data, SPEQC–WAVELETS guarantees that
the user-specified point-by-point error is respected by cali-
brating/adjusting the approximated values using the multi-level
error quantization strategy detailed next.

Via this strategy, we capture the integer representation of
the relative deviation between the approximated data and the
original data in an in-situ manner. While ε is user-defined with
respect to the original data, we capture ε with respect to the
approximated data due to the high correlation between relative
errors of adjacent locations in the sorted window. This lends
well to standard compression libraries, and produces a drastic

reduction in size upon compression. The transformed data is
reconstructed by capturing v′i×(1+εi/100). We then evaluate
whether the reconstructed value is within user-defined ε. If
not, then we proceed with the second-level of error encoding
by capturing the relative error again, but this time, between
v′i×(1+εi/100) and vi. The levels of error capture are repeated
until the data satisfies the user specified bounds. These extra
levels of error encoding add a non-significant overhead to the
storage size, since the S−preconditioner ensures that relatively
few points (< 2%) require further than a single-level of error
encoding.

Quantization of these level-one errors into 32-bit integers
results in a large degree of repetition, where majority of the
values lie between [-2, 2]. These integer values lend them-
selves to high compression rates (1% − 15%) with standard
lossless compression libraries, such as bzip, gzip, etc. Higher-
level quantized errors induce an almost negligible storage
overhead, usually less than 1%. Altogether these quantized
relative errors require Sε(EQ) storage (expressed in terms of
the percentage of the original data size) after applying lossless
compression and are stored along with the permuted index
(Ip) during encoding. Upon decoding, applying these relative
errors ensures decompressed values to be within a user-defined
ε point-by-point relative error.

D. Adaptive Error-Bounding Iterator
Once applied to a vector V of the linearized

double-precision data, the three major components—
S−preconditioner, EQ−calibrator, and Wavelets
compressor—will additively contribute to the SPEQC–
WAVELETS’s overall compression ratio, namely, via Equation
3:

CR(V ) = Sdouble(Ip) + Sε(EQ) + S(Coef), (3)

where S(Coef) is the percentage of the original data storage
occupied by Wavelets coefficients.

Next, we describe our adaptive and efficient strategy on
optimizing S(Coef). Note that S(Coef) per window depends
on the number of Wavelets coefficients stored for the given
window. This number, in turn, is dependent on both the
data and the user-defined accuracy requirements for each data
window. Here, we let the end-user define accuracy in terms of
the two widely used performance metrics: Pearson correlation
(ρ) and Normalized Root Mean Square Error (NRMSE)
between the original and Wavelets-based reconstructed data.

Since fixing the number of coefficients a priori is not an
option, we propose an adaptive strategy that iteratively finds
the minimal number of coefficients that satisfy user-defined
accuracy constraints. Coefficients are obtained at the maximal
wavelet resolution level of log2(W0) (see algorithm 2). It
ensures the efficient execution and a fast convergence of the
iterative search by taking advantage of the knowledge priors
about the optimal coefficient number from previously seen data
windows and of the dynamic updates to calculations of the
user’s accuracy metrics.

A binary search of the optimal number of Wavelets co-
efficients for the window of size W0 would require log2W0



Algorithm 2: Adaptive Error-Bounding Iterator
Input:
W—preprocessed window.
PCpref—end user’s preferences of Pearson Correlation
Npref—end user’s preferences of NRMSE
NC—Number of stored wavelet coefficients of the
previous window, default value is 8.
∆NC—prior knowledge learned from previous windows
of the trade-off between accuracies (Pearson Correlation
and NRMSE) and number of coefficients to be stored.
Output:
C—Compressed Data (Coefficients) for the window.
/* W ′ is the wavelet transformed data

at resolution level 8 */
W ′ ← Wavelet Transform(W )1

τ ← the NCth largest value in W .2

forall w in W do3

if w < τ then4

w ← 05

C ← {C, w}6

while Npref is not satisfied by C do7

/* N is the NRMSE value of C */
∆N ← N −Npref8

NC ← Coefficients Update(∆N , ∆NC)9

τ ← the NCth largest value in W . forall w in W do10

if w < τ then11

w ← 012

C ← {C, w}13

if PCpref is not satisfied by C then14

Similar iteration of lines 9 - 16, but replace N with15

PC, Npref with PCpref .

Update NC and ∆NC16

iterations of inverse Wavelet transformation and accuracy
calculations, thus inducing a large overhead. To improve the
efficiency of adaptive compression, we employ two strategies:
the first is to base accuracy analysis primarily around the
NRMSE metric, and the second is to learn from previous
windows to reduce the average number of iterations.

There are three main reasons behind applying the first
strategy: (1) while checking the accuracy of the reconstructed
data in the adaptive compresion process, if one of the two
error thresholds is crossed, then the other doesn’t need to
be calculated; (2) the Pearson correlation metric is linearly
related to the NRMSE (low NRMSE indicates high ρ);
and (3) NRMSE is computationally less demanding than ρ.
Thus, it makes sense for NRMSE to be the primary metric
as opposed to the Pearson correlation.

Regarding our second strategy, to reduce the number of
iterations of adaptive compression, we leverage the following
two assumptions: the first is that windows in the same data
set are spatially relevant, and the second is that learning from

previous windows will likely identify the optimal balance with
fewer attempts than the binary search. In our case, the first
assumption is satisfied, since the data we are working with
is spatio-temporal scientific data and the data per each time
step is spatially relevant. The second assumption also holds
according to our experiments (see Results Section).

IV. RESULTS

For our performance evaluations, we have chosen two types
of data to test: (a) simulation output data from six scientific
application codes running on supercomputers at peta-scale (see
Table I) and (b) 13 publicly available scientific datasets of one-
dimensional binary sequences of double-precision floating-
point numbers. The latter are commonly used for performance
analysis ([2]) and include data recorded by scientific instru-
ments, numerical simulations, and messages sent by a node
in a parallel system running a computational fluid dynamics
simulation. Throughout our results section, the abbreviations
and contexts in which we mention various datasets will be
referred to in accordance with this section.

We evaluate SPEQC–WAVELETS using compression ratio
(CR) as the data reduction metric and normalized root mean
standard error (NRMSE), Pearson correlation (ρ), and point-
by-point relative error ratio (ε) between the original and de-
compressed data as the accuracy metrics. [Note that achieving
NRMSE ∼ 0.0, ρ ∼ 1.0, ε ∼ 0.0%, and CR ∼ 12.5%
for double-precision and CR ∼ 25% would indicate excellent
performance.] Throughout this section, unless stated others,
the default values are the following: window size W0 = 256,
ρ ≥ 0.99, NRMSE ≤ 0.01, and ε ≤ 1.0%.

A. Scientific Data Analysis and Data Mining

In this section, we show that lossy compression induces
negligible or no adverse effect on subsequent data mining and
analysis tasks performed over the decompressed data or the
data derived from multiple decompressed variables compared
to the analysis results from the corresponding original data.

1) Analysis of XGC: The XGC-1 is a full distribution
gyrokinetic ion-electron particle code specifically designed
for simulation of edge plasmas in nuclear reactor [26]. In
this section, we analyze the fidelity of SPEQC–WAVELETS-
compression on variables derived from turbulence data pro-
duced by the simulation. Figure 2 shows the variation of tem-
perature values along poloidal and temporal resolutions over
original (left), and SPEQC–WAVELETS-decompressed data
(center). The rightmost image shows the absolute difference
over original and approximated data on an order of magnitude
lower scale. From the images created from approximate data, it
is evident that SPEQC–WAVELETS-compressed data captures
the same physical phenomena as the original data with high
fidelity.

2) Analysis of S3D: The S3D simulation code [15] is a
flow-solver that enables direct numerical simulation (DNS)
based on first principles for turbulent combustion. In this
section, we compare the accuracy of SPEQC–WAVELETS-
compression on variables obtained from the time-dependent



Fig. 2. Comparison of normalized turbulence intensity values in XGC field data for a fixed radial zone, across temporal and poloidal dimensions. The original
(left) and SPEQC–WAVELETS (middle) decompressed data, and the absolute difference (right) are shown. Note that the figure on the right is on an order of
magnitude lower scale.

turbulent flame S3D simulation of over 20 million grid points
and 50 timesteps. Figure 3 shows the comparison between
original and SPEQC–WAVELETS-decompressed data for the
temperature variable. Our analysis revealed that the temporal
average for temperature exhibited a mean relative error of only
0.04%. For variables u, v and w velocities (averaged over 50
timesteps), the relative error exceeded 1% for only 0.38% of
the 20 million grid points - the average relative error was
≈ 0.4%.

Fig. 3. Comparison of intensity plots of temperature values over 20 million
points in S3D data for original (top) and decompressed (bottom) data.

3) Aggregate Errors: k-Means Clustering: To analyze the
effect of EQ−calibrator, we performed k-means clustering
on SPEQC–WAVELETS-decompressed and the original data
from GTS and Flash simulations. The centroids for the k-
clusters were chosen randomly and the algorithm was run
for 100 iterations, for varying values of k. While increasing
the number of k values increased the misclassification error
as well, the resulting error rates still remained < 1% for

both GTS and Flash datasets 4. In fact, for GTS data, the
misclassification error rates were less than 0.1% at ε = 0.1.
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Fig. 4. Comparison of k-means clustering on 4096 point sample from Flash
and GTS data over varying ε, and k values. k-means was performed on 100
iterations, with randomly chosen centroids.

B. Effect of S−preconditioner

Applying S−preconditioner alone allows SPEQC–
WAVELETS for almost 85% data reduction (CR = 15%),
while still ensuring high quality per-window ρ∼0.99 and
NRMSE∼0.02 using GTS Density data set over 320 time
steps. In contrast, at the same CR, Daubechies Wavelets
without S−preconditioner (DW) performed with ρ<0.75 and
0.08<NRMSE<0.15 (see Figure 5).

Table IV shows the difference in the average NRMSE
and ρ correlation values between SPEQC–WAVELETS and
DW for 25 datasets, for the fixed CR ∼ 20% (W0 = 1024), .
We report the average correlation of 400 windows that provide
poor performance on NRMSE and ρ correlation in this case.
While DW exhibits a < 0.75 correlation value on several of
the datasets, SPEQC–WAVELETS remain consistently above
0.99. Although, the standard deviation values are not reported
here, the SPEQC–WAVELETS exhibited ≈ 10−5 standard



TABLE IV
SPEQC–WAVELETS VS. DAUBECHIES WAVELETS (DW) AT CR = 20% (†SINGLE-PRECISION AT CR = 32%)

Datasets ρ NRMSE
DW SPEQC–WAVELETS DW SPEQC–WAVELETS

msg bt 0.729 0.998 0.239 0.013
msg lu 0.729 0.998 0.244 0.016
msg sp 0.706 0.998 0.322 0.017
msg sppm 0.832 0.988 0.272 0.093
msg sweep3d 0.924 0.999 0.064 0.006
num comet 0.969 0.999 0.036 0.002
num control 0.873 0.999 0.120 0.003
num brain 0.820 0.997 0.081 0.004
num plasma 0.703 0.999 0.260 0.005
obs error 0.727 0.997 0.225 0.009
obs info 0.695 0.997 0.247 0.014
obs spitzer 0.998 0.997 0.002 0.000
obs temp 0.789 0.999 0.099 0.002
GTS potential 0.886 0.999 0.039 0.002
GTS density 0.787 0.998 0.091 0.011
Flash velx 0.886 0.999 0.139 0.004
Flash vely 0.807 0.998 0.121 0.014
Flash gamc 0.883 0.998 0.088 0.014
XGC1 flux 0.977 0.997 0.037 0.010
XGC1 temp 0.994 0.999 0.027 0.007
XGC1 exb shear 0.859 0.995 0.071 0.013
S3D temperature† 0.999 0.999 0.001 0.001
S3D velocity† 0.999 0.999 0.001 0.011
GCRM vorticity† 0.788 0.983 0.069 0.013
GWA density† 0.999 0.999 0.001 0.009

deviation that was almost two orders of magnitude better than
DW. The variation in DW performance on correlation can be
attributed to the noisy nature of scientific data. Hence, a larger
number of coefficients is needed in these cases to provide an
approximation comparable with SPEQC–WAVELETS . Note
that the NRMSE values for DW are consistently an order
of magnitude higher than for SPEQC–WAVELETS.

C. Effect of EQ−calibrator

Although there are a few data sets on which both SPEQC–
WAVELETS and DW perform comparably well (see Ta-
ble IV), DW does not guarantee the point-by-point devi-
ation to be small. In fact, as illustrated in Figure 7, there
could be a number of points (more than 17% (4%)) with a
large relative point-by-point error rate (ε ≤ 2.0% (10.0%)).
SPEQC–WAVELETS addresses this problem by applying
EQ−calibrator to ensure that the error remains within a small,
user-defined range (e.g., ε ≤ 1.0%).

Error quantization underlying the EQ−calibrator may intro-
duce an additional storage overhead, which is typically higher
for smaller values of ε. Figure 8 shows that increasing ε from
0.1% to 1.0% induces a 6% reduction in storage requirement
for both linear and nonlinear stages of the GTS Potential
simulation. However, the storage requirement hardly changes
as ε increases from 1% to 5% in a 1% increment. Figure
6 shows compression ratios for both the coefficients and the
quantization errors over the entire simulation run using the
GTS fusion and Flash astrophysics simulation codes. For GTS

Potential data, the compression ratio remains almost the same
across all stages of the simulation. With Flash data most
relative errors are 0’s after error quantization. Compressing
these values results in negligible storage overhead for the
majority of timesteps.

D. Adaptive Iterator Convergence

Using prior knowledge to iteratively find the number of co-
efficients that ensure that all the user-defined accuracy parame-
ters (ρ,NRMSE, ε) are respected, SPEQC–WAVELETS typ-
ically converges within 2.3± 0.73 iterations, averaged across
S3D, GTS, XGC (see Figure 9), GCRM, and SPH application
data sets. The data set for Flash velocity exhibited much higher
variabity with 5.6± 2.2 iterations per window to accomodate
a few spikes in CR to guarantee accuracy.

E. Data Linearization

One of the key requirements for SPEQC–WAVELETS de-
sign is robust performance regardless of the data model that
a scientific application utilizes. For example, XGC fusion
particles are mapped onto a toroidal mesh, and thus char-
acterized by their radial, poloidal, and toroidal dimensions.
To keep SPEQC–WAVELETS’s applicability wide and gen-
eral in regards to various application data models, SPEQC–
WAVELETS accepts any stream of linearized data; the specifics
of linearization are left up to the end-user. By reading
linearized data as an input, we introduce a new topic of
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Fig. 5. Comparison of accuracy (ρ,NRMSE) between original and
reconstructed GTS Density for SPEQC–WAVELETS and DW at fixed
CR = 15.57%.

Fig. 6. Compression ratio (CR) for coefficients and quantized errors across
different timesteps: t1 = 1, 000 and ∆t = 1, 500 for GTS Potential during
non-linear stages; t1 = 3, 000 and ∆t = 3, 500 for Flash Velocity; ε = 1%;
CR = 12.5% for sorted index.

concern: is the means by which data is linearized important
in determining compressibility.

We argue that our scheme does not produce significantly
different results for the same data linearized in different ways.
To ascertain the validity of this claim, we seek to empirically
determine that various permutations of data yield resultant

Fig. 7. Histogram of point-by-point relative errors (ε) for XGC Ion
Temperature with DW compression.

Fig. 8. Compression ratio (CR) for various point-by-point relative errors
(ε) in GTS Potential during linear and non-linear stages of the simulation.

compression ratios that have nearly equivalent mean and
median as well as a relatively low standard deviation. Our
experiment revolves around calculating the aforementioned
statistics and gathering results of compression of 10 different
permutations of the same 172,111 element vectorof the GTS
Potential during a nonlinear stage at time step 17,500. The
resultant average and standard deviation of the CR are 20.0%
and 0.59%, respectively.

F. Robustness and Scalability

SPEQC–WAVELETS is robust in terms of various met-
rics. First, the per-window CR and the number of iterations
required to converge to the user-defined accuracy typically
hardly vary (see Figure 10). Second, at a fixed CR, the per-
window accuracy almost stays the same for more than 25 real
data sets tested. Third, the overall CR at ε = 1%, . . . , 5%
remains roughly the same and only increases by less than 6%
as ε is reduced 10-fold. Finaly, the overall CR hardly changes
when the size of the data increases. Figure 10 illustrates the



Fig. 9. Iterations of adaptive error-bounded wavelets compression for each
window of two XGC data sets.

latter claim when the data size is being increased in multiples
of the original data fragment size. This is a typical trend
for data size growth when the data is being generated along
temporal dimension or being processed in blocks of spatial
regions.

Fig. 10. Compression ratio (CR) for data size increased by a multiplicative
factor of its original fragment size across different applications. CR = 12.5%
(CR = 25%) must be added for double- (single-) precision data.

G. Single- vs. Double-Precision Data

Scientific simulations often produce double-precision
floating-point data (8-byte elements). However, for archival
and community sharing purposes, these data often get
converted to single-precision (4-byte elements) format. This
type of storage inherently introduces a two-fold reduction in
data size on a byte-level.

While we designed SPEQC–WAVELETS primarily for
double-precision data reduction, in this section, we aim to
evaluate its performance on single-precision data. We con-
sider single-precision data from groundwater, climate, and
combustion application domains (see Table I). Due to our
S−preconditioner, the cost of storing the permutation index
for a window size of 256 vector elements after sorting is 25%
of the original single-precision data. Therefore, our overall
CR can never be less than 25%; and 50% CR will imply an
additional two-fold data reduction from the original double-
precision data. These facts are worth keeping in mind when
considering the compression ratios our method yields. In our
compression experiments, we took results from fixing the
point-by-point relative error ε to values of 0.1%, 0.5%, and
1% (while keeping 256-element sized windows). Figure 11
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Fig. 11. Compression ratio (CR) for various point-by-point relative errors
(ε) across different single-precision simulation data sets.

portrays the impacts that ε had on compression ratio. On a
macroscopic level, we see that SPEQC–WAVELETS reduces
single-precision data by more than two-fold in most of the
applications tested, even for small values of ε = 0.1%. It is
worthwhile noticing that on a microscopic view (window-by-
window) compression ratio does not vary significantly with
standard deviation of less than 1%, and our method generally
performs robustly regardless of the size of original data, as
illustrated in more detail in Section IV-F.

H. Compression and Decompression Rates

When tested on a compute node containing dual hex-core
2.6GHz AMD Opteron processors with 16GB of DDR2-800
memory, SPEQC–WAVELETS demonstrated a 23MB/sec and
14 MB/sec data compression rate without and with error
quantization, respectively. The corresponding decompression
rates were 221MB/sec and 185MB/sec.

V. CONCLUSION

Current data reduction techniques are inadequate in keeping
up with the large amounts of data generated at the tera- and
peta-scale in scientific simulations. In the past, some lossless
and lossy compression schemes have been explored in the
hopes of providing a reasonable compression ratio on (what is
now thought to be) random, noisy, and incompressible scien-
tific data. To alleviate the lack of such compression methods,
we introduce our SPEQC–WAVELETS (S-Preconditioned EQ-
Calibrated Wavelets) method, a combination of techniques that
allow us to reduce the size of scientific data by an amount
significantly greater than current state-of-the-art techniques.
Additionally, our method is robust and scalable in that overall
compression ratio does not vary significantly with larger data
(as well as data with various error-bounds ranging from 1%
to 5%), means of data linearization are unimportant, and the
number of iterations required to converge upon user-defined
accuracy parameters vary minimally.

To empirically determine these assertions, we ran experi-
ments on 13 public data sets as well as 12 scientific simulation



code datasets to ascertain that our method could be applied
on datasets from various origins and disciplines. In all cases,
we calculated Pearson Correlation, Normalized RMSE (Root
Mean Standard Error), per point relative error, and compres-
sion ratio to numerically assess the efficacy of SPEQC–
WAVELETS. We found that in almost all cases, our method
yields a 0.99+ Pearson Correlation score and an NRMSE
on the order of hundredths while still in the user-specified
error boundary, as well as a multi-fold reduction in original
data size. Moreover, data analysis and data mining results
performed over the decompressed data were of comparable
quality with the ones performed over the original data.
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