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Abstract—Livestreaming platforms enable content producers,
or streamers, to broadcast creative content to a potentially large
viewer base. Chatrooms form an integral part of such platforms,
enabling viewers to interact both with the streamer, and amongst
themselves. Streams with high engagement (many viewers and
active chatters) are typically considered engaging, and often
promoted to end users by means of recommendation algorithms,
and exposed to better monetization opportunities via revenue
share from platform advertising, viewer donations, and third-
party sponsorships. Given such incentives, some streamers make
use of fraudulent means to increase perceived engagement by
simulating chatter via fake “chatbots” which can be purchased
from shady online marketplaces. This inauthentic engagement
can negatively influence recommendation, hurt streamer and
viewer trust in the platform, and harm monetization for hon-
est streamers. In this paper, we tackle the novel problem of
automating detection of chatbots on livestreaming platforms. To
this end, we first formalize the livestreaming chatbot detection
problem and characterize differences between botted and gen-
uine chatter behavior observed from a real-world livestream-
ing chatter dataset collected from Twitch.tv. We then propose
SHERLOCK, which posits a two-stage approach of detecting
chatbotted streams, and subsequently detecting the constituent
chatbots. Finally, we demonstrate effectiveness on both real and
synthetic data: to this end, we propose a novel strategy for
collecting labeled, synthetic chatter dataset (typically unavailable)
from such platforms, enabling evaluation of proposed detection
approaches against chatbot behaviors with varying signatures.
Our approach achieves .97 precision/recall on the real-world
dataset, and .80+ F1 scores across most simulated attack settings.

I. INTRODUCTION

In recent years, livestreaming platforms such as Twitch,
YouTube Live, Facebook Live, and Ustream have grown to
become dominant players in the content broadcasting space,
commanding millions of broadcasters and tens of millions of
daily active users [1]. These platforms provide avenues for
broadcasters, or streamers, to share creative content of various
forms (e-sports gameplay, live events, art, etc.) to a large
audience. Each broadcasting session, or stream, consists of two
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key components – the content being shared live to viewers, and
a chatroom (Figure I(left)), where viewers can chat and interact
amongst themselves, and with the streamer. These chatrooms
provide a completely different community experience to view-
ers in contrast to traditional media, providing an increased
sense of participation and gratification [2].

Most livestreaming platforms recommend streams to would-
be viewers based on prior and current engagement metrics,
which is effectively a function of viewership and chatroom
activity. Specifically, streams that garner high viewership and
have active chatrooms are considered to be likely interesting
and engaging to new viewers, and are thus recommended to
draw new viewers, amplifying preferential attachment effects.
Moreover, streamers who produce such content and draw such
engagement are prime candidates for on-platform and off-
platform monetization via advertising revenue share, donations
from viewers, and sponsorships from third-parties (i.e. com-
puter hardware companies for e-sports professionals). Such
incentives lead some streamers to resort to fraudulent methods
to increase their viewership [3] and increase chatroom activity
[4]. Numerous online marketplaces like streambot.com and
youtube-livebot.com offer streamers the ability to increase
their chatroom activity over sustained period of time, via
chatbots which simulate human-like chatter. Such fraudulent
engagement has several adverse effects: (a) honest streamers
may not be as highly recommended as fraudsters and lose out
on potential engagement they may have otherwise garnered
via preferential attachment, (b) viewers and streamers have
reduced trust in the platform to recommend and prioritize
good content, (c) the platform and third-party sponsors may
lose money by partnering with fraudulent streamers who reach
much lesser human eyes than their metrics suggest. Despite
these concerns, prior work in mitigating chatbot abuse on
livestreaming platforms is minimal – we seek to bridge the
gap in this work.

There are numerous challenges in this problem setting: (a)
noisy data: livestreaming chatter is full of messages with
ill-formed sentences, containing spelling errors, “legitimate”
spam messages (copypasta), and emotes, limiting efficacy of
text-based features to identify fraudulent activity, (b) user-
controlled fraud: most chatbotting services available on online
marketplaces allow streamers to control the bots (Figure I),
giving them the ability to decide when and how much fake
chatter should be introduced, and thereby complicating the
attack space and hurting detection generalizability, and (c)
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Fig. 1: (Left) Livestreaming platforms offer chatrooms (top), which streamers can manipulate via chatbotting tools (bottom)
that enable customization of chat interval, number of chatters and even message contents. (Center) We propose SHERLOCK, a
two-stage chatbot detection approach based on stream (top) and user-level classification (bottom). (Right) We enable discovery
of chatbotted streams (top – notice genuine users asking for moderators to handle the bots), and the constituent chatbots via
discriminative features (bottom – large points indicate high user density).

lack of ground-truth: as livestreaming platforms operate at
an extremely large-scale and do not reveal the chatbots they
proactively ban from the service, obtaining reliable ground
truth for building machine learning models is non-trivial.

In this work, we tackle these challenges and more. To our
knowledge, we are the first to study the chatbot detection prob-
lem in the livestreaming setting. Specifically, our contributions
are as follows:

1) Problem formulation: We formalize the chatbot detec-
tion problem in the context of chatrooms of livestream-
ing platforms.

2) Dataset collection and characterization: We obtain
real livestreaming chatlog data, and compare the be-
haviors of chatbots and real users. We also discuss
how to construct labeled synthetic chatter datasets from
livestreaming platforms, for a variety of attack models.

3) Proposed framework: We propose SHERLOCK which
tackles chatbot detection in a two-stage approach: detect-
ing botted livestreams using a classification model (stage
I), and detecting constituent chatbots using a seeding
and label propagation approach (stage II). Overview of
approach given in Figure I(center).

We conduct several experiments to demonstrate that our
proposed method is (a) effective: we show that our ap-
proach outperforms alternatives in detection performance on
real chatlog datasets (.97 precision/recall) (Figure I(bottom-
right))(b) robust to different attacks: we show consistently
good performance in detecting chatbots across many at-
tack configurations (≥ .80 F1 against most attack set-
tings), and (c) scalable: our approach scales near-linearly

on large datasets, especially due to our two-stage task for-
mulation. We make the code for SHERLOCK available at
https://github.com/shreya-03/Sherlock.

II. RELATED WORK

We discuss prior work in (a) detecting chatbots, and (b)
astroturfing in social media.

Detecting chatbots. Most prior work on chatbot detection
consider chatbots as accounts that spread malicious or spammy
URLs [5], [6], [7]. [5] proposed a classifier based on entropy-
based features (message length, and inter-message delay) to
detect chatbots on Yahoo chat systems. [6] used similar fea-
tures to differentiate between bot and genuine users on various
instant messaging platforms in IM (instant messaging) settings
(i.e. human is chatting only with one user (bot/genuine)).
Additionally, [7] proposes detecting chatbots based on the
links they post, using cues from spam classification literature
to detect malicious URLs. However, all of these methods are
based on IM platforms, where chat messages are more directed
towards other chatters, and are primarily concerned with
delivering a payload of a malicious URL. Our work studies
chatbots on livestreaming platforms, where bots are used with
an alternative purpose of increasing perceived chatter, and
hence vary in their design and motive. Though many works
tackle bot detection on popular social media platforms, such
as Twitter [8], [9], Facebook [10], and software marketplaces
[11], [12], they are characteristically different from our work
as they do not focus on detecting chatbots. Besides this, there
is a lot of work in designing conversational agents [13], which
is beyond the scope of this work as they aim at coming up
with creating realistic chatbots not for malicious purposes.



Astroturfing in social media. Social media websites have
become a common target for astroturfing, where users arti-
ficially inflate engagement to increase perceived popularity.
Graph-based factorization approaches to group nodes based
on similarity or dense connectivity implying suspicious, large
clusters have shown considerable success in detecting fraud-
ulent activities [14], [10], [15]. Random-walk based methods
have also been used to detect abnormal cuts between suspi-
cious and legitimate parts of a social graph [16]. Content-based
methods use textual features [11] or local engagement features
(i.e. based on egonets) [17] to detect spam and fraud. [18]
also propose temporal methods focusing on finding anomalous
patterns in multivariate time series. The closest work to ours is
by [19], in which the author proposes an unsupervised method
to detect livestreaming viewbots. Despite rich literature in this
space, none of the prior works have focused on the problem
setting of detecting chatbots on livestreaming platforms.

III. PROBLEM STATEMENT

Each stream on a livestreaming platform generally consists
of a chatroom panel located adjacent to the live video player
(Figure I(Left)). Viewers must be signed in to participate in
chat, and the messages typed by any of the signed-in viewers
appears in realtime as the user sends each message. Each
message is associated with the username of the author, as
well as its timestamp. All chat messages are textual (i.e. text,
emojis, URLs). Messages are typically short, and have a length
cap to prevent single users from dominating the community
chatroom with spam. Such chatrooms typically allow users to
reply to one another (via an “@handle” mechanism), inducing
a conversational aspect to the room. In this work, we leverage
all available sources of information above: Specifically, we
collect data pertaining to a set of livestreams S. For each
stream s ∈ S, we collect the set of all messages Ms. We
refer to messages on stream s that were posted by user/chatter
i as Ms,i, and the timestamp of the jth message from user i
on stream s as ts,j,i. Given these information sources, we aim
to detect chatbots.

We note that considering all users in all streams is a
computationally heavy and expensive task. Moreover, it is
difficult to claim in isolation whether any given message is
from a chatbot or real user, and even if a single user is a
chatbot or not. We take a step back to consider that instead
of gauging whether each message or user is legitimate or
not, we should first consider the aggregate behavior of the
parent stream. This is because it is unlikely to observe a single
chatbot in isolation, but far more likely to observe a number
of chatbots orchestrating a coordinated activity inflation effort
on a given stream. By focusing on a stream-level first, we can
leverage aggregate behaviors from many messages from many
users jointly to infer whether the stream appears to be botted
or not. We formally define this task as follows:

Problem 1 (Chatbotted Stream Identification). Given a set
of streams S , and corresponding set of chatters Cs for each
s ∈ S, find the set of chatbotted streams.

Table I: Dataset Statistics
# of chatlogs 690
# of messages 439, 650
# of streamers 168
# of chatters 8, 885
Median stream duration 2.7 hours

Upon obtaining the set of suspected chatbotted streams Scb,
we can next focus only on this subset to discern suspected
chatbots from real chatters. We argue that while it is conceiv-
able that chatbots may exist in isolation in other streams, it is
unlikely, and at best ineffective from the streamer’s point of
view. Moreover, since Scb is likely to be much smaller than S,
we can dramatically improve scalability by avoiding chatbot
detection for determined “low-suspicion” streams, and only
focusing on the high-suspicion ones. The task that we pose
for these is as follows:

Problem 2 (Chatbot Identification). Given a suspicious
chatbotted stream s ∈ Scb, and corresponding set of individual
chatters I, label each chatter i ∈ I as being part of the
(disjoint) set of real users Ir or chatbotted users Icb.

IV. DATA DESCRIPTION

In this work, we study Twitch, a dominant livestreaming
platform with over 2.2M streamers and 15M unique daily
viewers reported in 20181. Note that due to limitations on
data collection and labelling cost, it is unfeasible to work with
their platforms. However we assume that a similar method
of providing chatbots is also used for other livestreaming
platforms. We collected chatter of 439K messages over a
period of three months from August to October 2018 from
chatrooms of 690 randomly chosen Twitch streams. A brief
description of the dataset collected is given in Table I.

Annotation. We manually annotated 183 chatlogs out of the
690 collected. The annotators used cues such as relevance of
text to the context, number of messages posted by accounts,
metadata and other similar signals to identify if a particular
livestream was chatbotted or not, as per knowledge from prior
literature [19] and a survey of chatbotting services. The an-
notators found 24 botted and 159 seemingly genuine streams.
While annotation was possible, it took each annotator roughly
104 hours to complete the task, clearly making annotation of
the entire dataset infeasible. Thus, for our further analysis,
we use the 183 streams, with 78, 124 messages from 6, 167
genuine users and 23, 236 messages from 2, 739 chatbots.

V. INITIAL OBSERVATIONS

Before proposing our approach, we conduct preliminary
exploration of the dataset and try to identify key statistics
that can help us differentiate the genuine and suspicious
streams/bots. In this section, we describe the potential features
we considered and point out the key insights we obtained about
genuine and fraudulent behavior.

Message frequency. Since bots are created with the purpose
of increasing chatroom activity, it is natural to assume that

1https://twitchadvertising.tv/audience/



(a) Number of messages distribu-
tion ECDF.

(b) Example of genuine and chat-
botted streams.

Fig. 2: (a): ECDF for median distribution on number of
messages for genuine and chatbotted streams. (b): Distribution
of number of messages posted for randomly selected genuine
and chatbotted streams.

they will post more messages than the genuine users in a
stream. However, it could be contrary as well, that is if
the users are fooled by the bots into believing that bots
are actually genuine accounts, it might happen that genuine
users might keep up the end of conversation and end up
creating similar or more messages than the bot accounts.
For each stream, we compute the median of the number of
messages posted distribution. We observe that the number of
messages for chatbotted streams is higher than that of genuine
streams. We show this by plotting the empirical cumulative
frequency distribution (ECDF) in Figure 2(a). Additionally, we
observe that the median statistic is able to differentiate between
chatbotted streams and genuine streams with a Kolmogrov-
Smirnov test p-value of 4.34 × 10−8. Based on the above
statistics, we make the following key observation:

Observation 1 (MESSAGE FREQUENCY). Chatbots tend to
post more messages than genuine users, with most chatbots
posting messages with similar frequency.

Inter-message delays (IMD). IMDs have been used pre-
viously in literature to identify bot behavior [18]. They have
proved to be useful in identifying footprints of automation
by scripting, which tends to be regular and deterministic. We
define IMDs for an entire stream as the difference in time
between each pair of consecutive messages from the same
user, across all users for the duration of the stream.

We plot the ECDF of median IMDs for each stream in
Figure 3(a). We can observe that ECDF differs significantly
for genuine and chatbotted streams (KS Test p-value: 1.93×
10−19). We also plot the PDF across all IMD for users in
genuine streams and users in botted streams, and show this in
Figure 3(b). Based on the above plots, we make the following
observation:

Observation 2 (INTER-MESSAGE DELAYS). Chatbotted
streams have a higher IMD than genuine streams. Chatbots
have a consistent IMD showing that they are automated.

Message Spread. Since bots are designed to maintain
engagement for extended periods (rather than specific times),
we hypothesize that they post throughout the duration of

(a) Median IMD distribution
ECDF.
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Fig. 3: (a): ECDF for distribution of median on IMD for
genuine and chatbotted streams. (b): Distribution of IMD.
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Fig. 4: (a): ECDF for distribution of median on number of
windows per user for genuine and chatbotted streams. (b):
Distribution of number of windows per user.

most chatbotted streams. We investigate this empirically by
counting the number of equal-duration time intervals in which
a particular user posts during the duration of the stream.
To compute this, we partition the stream into equal-duration
intervals, and count the number of windows in which each user
posts a message. Intuitively, users who post consistently will
appear in more windows. Figure 4(a) shows the ECDF of the
median of the number of windows per user distribution. We
note that the distribution for chatbotted and genuine stream
is significantly different, corroborated by a KS test with p-
value of 7.34 × 10−7. Figure 4(b) shows examples of these
distributions for a chosen bot and genuine stream. We have
the following observation:

Observation 3 (MESSAGE SPREAD). Chatbots’ message
distribution is more spread out, and on average, they post
consistently throughout the stream.

Textual Cues. We additionally experimented with various
features from text mining literature to determine if language
used by chatbots is significantly different from that used
by genuine users. We compared tf-idf scores, conversational
dynamics, and similarities in term usage within chatbot and
genuine user groups. Interestingly, we were not able to find
any distinguishing patterns for chatbots. This is likely due to
(a) message text being extremely noisy and short, (b) too much
sparsity for conversation threads via “@handle” mechanism,
and (c) most chatbot marketplaces enable customers to upload



a text file of quotes used by chatbots, making the text cus-
tomizable and seemingly relevant to legitimate chatter on the
stream. An illustrative example of bot messages being short,
noisy and indistinguishable from genuine messages is shown
in Figure I(top-right).

VI. PROPOSED FRAMEWORK: SHERLOCK

We next propose SHERLOCK, a two-stage framework which
solves Problems 1 and 2 as discussed below.

A. Stage I: Detecting Chatbotted Streams

Given the set of streams S, we first aim to detect the
chatbotted streams Scb. Based on observations from Section
V, we aim to featurize streams in a space that can best
differentiate chatbotted and genuine streams. We discuss our
features below:

Number of messages. Observation 1 shows that chatbotted
streams tend to have higher numbers of messages than genuine
ones. Though many summary statistics can be extracted from
the number of messages distribution, we found that weighted
top-k modes (most frequent values) worked well empirically,
as they represented the k largest “peaks” in the distribution. We
were interested in capturing (possibly multiple) spikes in the
distribution (for example, see Figure 2), which are generally
associated with chatbotting activities. We used k = 3 to avoid
introducing noise. Further, we weighed each of the k peaks
with the associated fraction of users, allowing us to capture
the intensity and overall contribution of the peak. Intuitively,
peaks at large number of messages, and with high fraction of
users are the most suspicious. This produces 3 features.

IMD quantiles. Observation 2 reflects that chatbotted
streams tend to have higher IMDs than genuine ones. More-
over, many chatbots have spiky behavior which involves long
lulls between chat messages. To capture the spikes and the
overall higher IMD of chatbots, we used higher quantiles of
the stream IMD distribution (60%ile, 70%ile, 80%ile, 90%ile).

Number of windows. Observation 3 posits that since chatbots
send messages atypically, and spread throughout the chat
(rather than in quick conversations), they appear in higher
numbers of windows than genuine users. Thus, a stream
with many chatbots will likely have a number of window
distribution with peaks associated with chatbot behaviors.
Following the same rationale as before, we take the weighted
top-k modes, again using k = 3 to avoid noise.

Concatenating these, we arrive at a 10-dimensional feature
space. Next, we train a supervised model over this feature
space and use the classifier to predict chatbotting propensity
for any new, unseen stream. We add those with a sufficiently
confident predictions to Scb.

B. Stage II: Detecting Constituent Chatbots

Upon obtaining a set of chatbotted streams Scb, our goal
for each stream s ∈ Scb, is to label each user i ∈ I
(relevant chatters) as belonging to real users Ir or chatbots
Icb. We use a semi-supervised learning approach for this
stage; such approaches have been demonstrably useful in

tasks for which ground truth is limited. In the livestreaming
case, collecting ground-truth for individual users as chatbots
is highly challenging, time-consuming and unscalable. Thus,
we employ a label propagation approach to identify chatbots.

Generating seeds. The success of our label propagation
approach for classifying users naturally depends on the good-
ness of the seed labels. If a stream s ∈ Scb has a sufficiently
high prediction score, we conjecture that Icb will be large
compared to Ir. With this key assumption, we consider certain
regions of our feature space to identify seed users for whom
we have “high confidence” seed labels. We use heuristics
based on our earlier observations to obtain these seed labels.
Specifically, our approach begins by bootstrapping seed sets
using empirically observed highly discriminative features (i.e.
high confidence seeds):

Number of messages. Observation 1 notes that chatbots tend
to post more messages than genuine users. We denote number
of messages sent by chatter i as mi.

Mean IMD. Observation 2 notes that chatbots tend to have
longer IMDs than genuine users. We denote chatter i’s mean
IMD as di.

Subscription status. Many livestreaming platforms offer
paid subscription models, where users can pay to subscribe to
a streamer. We assume that subscribers are genuine chatters,
and can thus be exonerated. We use ri to indicate chatter i’s
subscription status.
Next, we refine the seeds by exploiting synchronicity over less
discriminative features to gain confidence in seed veracity; we
use the following features:

Number of windows. The message spread of a chatter
provides a strong signal if a particular chatter is a bot or not.
We count the number of unique windows a chatter i posts a
message in and denote it by wi.

IMD entropy. In addition to computing mean IMD, we also
compute entropy of IMD. For each chatter i, entropy of it’s
inter message delay distribution is given by hi = H(IMDi).

This approach is summarized in Algorithm 1, which we
describe next. We first consider consider all users in I on
m (number of messages) and d (mean IMD) (Line 1), as
we empirically observed that these features are highly dis-
criminative. In this (d,m) space, we first remove outliers
(Line 2) in sparse regions due to low confidence about their
status. Next, we initialize sets Rcb and Rr with users who
have jointly high, and jointly low values on the features; these
sets represent candidate bots, and candidate genuine chatters
respectively (Lines 3-4). For users in each Rcb and Rr, we
next identify the largest cluster of candidate bots and genuine
users (we use X-Means clustering [20] as it automates choice
of cluster count using information theoretic measures), and
add them to the seed set with respective labels (Lines 6-7).
We further refine the seeds by exonerating users where 1(ri).

Next, we refine Rcb and Rr. To do so, we first construct a
bounding box Bcb aroundRcb (Line 8), which captures nearby
users that may be missing in Rcb, but may still be suspicious.
We then consider the number of windows w and IMD entropy
h feature values for these users, as we empirically observed



Algorithm 1: SEEDUSERS

Input: Number of messages vector m, mean IMD vector d, number of
windows vector w, IMD entropy vector h, subscriber indicator
vector r, synchrony threshold nsim

Output: Refined seed sets Rcb, Rr

1. Project all users into a subset feature space: {m,d}
2. Remove outliers chatters in this subset feature space.

/* Initialize candidate bot region. */
3. Rcb ← {i ∈ I |mi > µ(m) and di > µ(d)}

/* Initialize candidate genuine user region. */
4. Rr ← {i ∈ I |mi < µ(m) and di < µ(d)}

/* Exonerate users with paid subscriptions. */
5. S ← {i ∈ I |1(ri)
6. Rcb ← (largest cluster in Rcb) \ S
7. Rr ← (largest cluster in Rr) ∪ S

/* Track # windows and IMD entropy in candidate bot region. */
8. Create bounding box Bcb around cluster Rcb.
9. W ← {} // multiset with freq. mW (·)

10. H ← {} // multiset with mH(·)
11. for chatter i in Bcb do
12. W ←W ∪ {wi}
13. H ← H∪ {hi}
14. end

/* Augment chatbot seeds with too-synchronous users. */
15. Wsync ← {w ∈ W |mW (w) ≥ nsim}
16. Hsync ← {h ∈ H |mH(h) ≥ nsim}
17. for chatter i ∈ I do
18. if wi ∈ Wsync and hi ∈ Hsync then
19. Rcb ←Rcb ∪ {i}
20. Rr ←Rr \ {i}
21. end
22. return Rcb,Rr

that many chatbots tend to share similar values (motivated by
Observations 2-3). We identify the feature values that occur
over users in Bcb with greater than a given frequency nsim
as supposed “peaks” or bot signatures. Given these, we add
chatters in I who have highly recurring feature values to Rcb,
and also remove them from Rr if applicable. In effect, our
seeding process is a two-level clustering, where the first-level
relies on exploiting knowledge of suspicious regions in the
(d,m) space, and the second-level relies on augmenting this
with non-region-specific synchronicity in the (w,h) space. We
note that we considered seeding via a single clustering stage
in experimentation, but achieved poor results due to noisiness
induced by the less-discriminative features.

Propagating suspiciousness. Upon obtaining the seed sets
Rcb and Rr, we constructed a k-nearest-neighbors (kNN)
graph between all chatters in I to represent their proximity
in the feature-space. Finally, we utilized a graph-based label
propagation algorithm proposed in [21], seeding nodes (users)
with labels as applicable. We tuned parameters of the propa-
gation algorithm empirically to maximize performance.

VII. EXPERIMENTS

A. Baselines

Although no prior works are directly related to the problem
we tackle on livestreaming chatbot detection, we adapt certain
spam detection approaches which use user similarity and
textual features for this setting.

Supervised Spam Classifier (SSC) [22]: We adapt the
original work (used for Twitter spam user classification) to our
setting. For each user, various features like max, min, mean,

Table II: Precision and Recall for SHERLOCK, SSC and
SynchroTrap on real data.

Model
Genuine Class Bot Class

Precison Recall Precision Recall

SHERLOCK 97.4% 98.6% 97.0% 94.4%
SSC 92.6% 96.2% 90.0% 82.8%

SynchroTrap 74.1% 51.8% 35.4% 59.3%

median of number of words, characters, URLs and IMDs are
used to infer in a supervised fashion if user is a chatbot or not.
The method works at user-level and does not consider group
effects/information at stream level.

SynchroTrap [23]: SynchroTrap is an unsupervised method
that operates on user groups; hence, we apply it for each
stream to identify constitutent chatbots. We construct edges
between any pairs by measuring a soft Jaccard similarity
(values are considered similar if they are within small ε)
between every pair of users. The similarity is computed on
two features – (i) IMD, and (ii) number of messages for each
user, for every window. We sum the two similarity scores and
construct a pairwise similarity graph. We cluster the matrix
into two groups via KMeans, and consider the chatbots as the
one associated with the group that maximizes performance.

B. Results on Real Dataset

We evaluate SHERLOCK against the two adapted baselines.
We evaluate all three methods at the finest applicable gran-
ularity, on their eventual detection performance in detecting
chatbots. Stage I is applicable only for SHERLOCK, and we
evaluate it’s performance using 5-fold cross validation. We
discover that SHERLOCK correctly identifies 98.3% of streams,
reporting a precision of 0.95. We run Stage II only on those
streams that are marked as chatbotted in Stage I; thus, for a
misclassified genuine stream, all chatbots are false negatives,
and vice versa. For SynchroTrap, we evaluate on all 183
streams in our dataset. Similarly for SSC, we evaluate on all
users. We report precision/recall values for each method in
their capability to identify chatbots in Table II.

We find that SHERLOCK outperforms both SSC and Syn-
chroTrap in precision and recall, despite SHERLOCK only
requiring stream-level labels and SSC requiring much harder to
obtain user-level labels. We further conjecture that SSC would
perform much worse if the chatbot text was more intelligently
generated, while our approach would remain unaffected, due to
our text-agnostic feature space. SynchroTrap (unsupervised),
works at the stream-level and is unable to leverage information
from other streams, hence performing the worst.

C. Synthetic Dataset Generation

As real world data is not exhaustive, we perform a set
of experiments on a variety of synthetic datasets to test the
performance of our approach in Stage I/II under unseen,
adversarial settings. We consider only our performance, given
that SynchroTrap is shown to perform poorly in Table II, and
SSC only operates at user-level.

To generate a synthetic, labeled chatbotted livestreaming
dataset, we performed the following steps. Firstly, we hired a



chatbot service provider and had them attack a dummy stream
we had setup ourselves. We avoided targeting others’ streams
to avoid hurting their reputation. We logged all timestamps
relative to the beginning of the stream. We then collected
chatlogs with timestamps from a variety of popular, Twitch
verified profiles which had high subscriber count. Finally, to
generate instances of “chatbotted” streams, we superimposed
the original (“legitimate”) and synthetic (“botted”) chatter,
while maintaining respective relative timestamps of both sets
of messages. This is a reasonable construction strategy since
most chatbots behave independently of legitimate conversation
dynamics. We additionally vary control parameters configured
through the service provider (the number of chatbots active,
Nc, and the maximum delay between consecutive messages
dmax). By varying these two variables, we construct four
attack models:

• Controlled Chatters (CC): We fix Nc and vary dmax,
mimicking an attack mode where streamers use a constant
number of chatbots and tweak delays over the stream.

• Rapid Increase (RI): We start with a small Nc and large
dmax, and rapidly increase the former and decrease the
latter, until the former reaches a certain point. This mim-
icks streamers trying to poorly emulate organic growth
and prolonged engagement.

• Gradual Increase (GI): We consider a similar case as RI,
but with longer delays between changing Nc and dmax,
mimicking a more patient attacker.

• Organic Growth (OG): We increase Nc over time, but at
each increase, we revert to a large dmax before decreasing
it (in contrast to keeping dmax fixed or a given Nc as
in RI/GI), and eventually converging. This mimicks an
intelligent attacker, trying to prevent sudden growths in
number of chat messages.

To create synthetic datasets, we consider the various (a)
attack models {CC, RI, GI, OG}, (b) stream duration {0.5, 1,
1.5, 2, 2.5, 3 hours}, (c) ratio of botted to overall messages and
(d) ratio of chatbots to real users {40, 60, 80%}. We created
multiple simulated attack chatlogs by considering variants of
{a,b,c} and {a,b,d}. This labeled dataset is also used to train
the Stage I classifier when classifying unseen streams.

D. Results on Synthetic Dataset

By considering various parameters, we generated 945 CC,
180 RI, 149 GI and 939 OG chatbotted streams. For Stage I,
we report performance of SHERLOCK using various traditional
supervised learning methods, for different attack models. For
Stage II, we consider only streams classified as chatbotted in
Stage I. We study the effects of the various synthetic chatlog
generation parameters mentioned above.

Stage I: We evaluated performance of different supervised
classification models over our feature set, and across varying
attack models. We used the corrupted versions of legitimate
streams as the positive class, and the original legitimate
streams as the negative class. All experiments were conducted
using 5-fold cross validation – Table III shows F1 score for
the different classification and attack models.

Table III: F1 score of SHERLOCK across different classification
and attack models (Stage I).

Classifier CC RI GI OG

Decision Tree 0.884 0.943 0.906 0.881
Random Forest 0.889 0.940 0.922 0.899

SVM 0.775 0.711 0.623 0.781
NN 0.842 0.927 0.902 0.892

NN-MLP 0.852 0.925 0.911 0.833
XGBoost 0.897 0.949 0.928 0.909

We found that gradient boosted trees (XGBoost) performed
the best amongst the tested methods. Moreover, we discovered
that for all classifiers, the CC attack model is the most difficult,
while RI is the easiest. We conjecture that this is due to our
model’s reliance on discriminating IMD features, which are
most variant throughout the stream under the CC model (unlike
other models, dmax never stabilizes in CC).

Stage II: We conduct analysis on all streams marked as
botted by the best-performant Stage I classifier. We study the
effect of attack model, stream duration, and noise (both ratio
of chatbots, and ratio of bot messages). Figure 5 shows the
collective results in terms of F1 score.

Effect of Attack Model. Unlike in Stage I, we find that the
OG model is most challenging. We conjecture that the OG
model produces tremendous diversity in the user feature space
given many different chatbot configurations, and thus hurts
the clustering and propagation steps the most. The GI model
proves the easiest to handle; the slow, staggered parameter
changes produces several close-by microclusters, which are
well-handled by the label propagation.

Effect of Duration. Figures 5(a-c) and (d-f) show that
duration impacts performance minimally, with slight reduction
for higher durations, likely due to increased IMD variety in
genuine behaviors.

Effect of Noise. We alter between two types of noise models,
based on the bot message and bot user ratios. In both cases,
increasing the chatbot noise percentage improves performance
across various attack models and durations for most configu-
rations. For example, F1 score improves from 78.38(40%), to
91.39(60%), and 92.94(80%) for the 2-hour, CC model, bot
user noise setting (red bars in (a-c)). Naturally, higher chatbot
signal accentuates the features we use for chatbot seeding and
label propagation, lending to better separation.

E. Scalability

Our two-stage approach is designed to scale naturally, as
Stage II (more demanding) works on a significantly reduced
set of streams. We evaluate SHERLOCK’s scalability in terms
of both stages. For Stage I, we generate a synthetic dataset with
varying number of streams and show runtime in Figure 6(a).
For Stage II, we measure time for seeding and propagation;
despite O(kn2) worst-case complexity for k neighbors and n
users, Figure 6(b) shows near-linear convergence in practice.

VIII. CONCLUSIONS

In this work, we tackle the problem of detecting chatbots
on livestreaming platforms. Chatbot detection is important
due to its direct impact on recommendation, user trust and



(a) 40% of chatbots (b) 60% of chatbots (c) 80% of chatbots

(d) 40% of messages posted by chatbots (e) 60% of messages posted by chatbots (f) 80% of messages posted by chatbots

Fig. 5: Performance of SHERLOCK on various attack models (bar colors), stream durations (bar groups), noise levels (columns)
and noise types (bot users in (a-c), and bot messages in (d-f)). SHERLOCK is robust to noise and performs consistently well
across varying adversarial configurations, with F1 scores generally over 0.80.

(a) Stage I (b) Stage II

Fig. 6: SHERLOCK has near-linear runtime in (a) # streams
(Stage I) and (b) # users (Stage II).
monetization for these services. We make several contributions
in this paper: We are the first to introduce and formalize
the chatbot detection problem in the livestreaming setting.
Next, we collect and annotate a real-world livestreaming chat
dataset from Twitch.tv and compare and contrast genuine and
chatbot user behaviors, by identifying key differentiators. We
additionally discuss a strategy for obtaining realistic chatlogs
with varying attack types and signatures, and employ it in
our experimentation. Based on our observations, we propose
SHERLOCK, a two-stage approach for detecting chatbotted
streams and users with limited supervision. Finally, we evalu-
ate SHERLOCK’s effectiveness on both - a real-world dataset
(achieving .97 precision/recall), and a synthetically generated
dataset, showing robustness under various intelligent attack
models (achieving 0.80+ F1 score across most settings), and
also demonstrate near-linear empirical runtime.
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