
Improving I/O Throughput with PRIMACY: Preconditioning ID-Mapper for
Compressing Incompressibility

Neil Shah∗†, Eric R. Schendel∗†, Sriram Lakshminarasimhan∗†, Saurabh V. Pendse∗†,
Terry Rogers∗ and Nagiza F. Samatova∗†
∗Department of Computer Science

North Carolina State University, Raleigh, North Carolina 27695–8206
Email: {nashah3,erschend,slakshm2,svpendse,tdroger2}@ncsu.edu, samatova@csc.ncsu.edu

†Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830–8001

Abstract—The ability to efficiently handle massive amounts
of data is necessary for the continuing development towards ex-
ascale scientific data-mining applications and database systems.
Unfortunately, recent years have shown a growing gap between
the size and complexity of data produced from scientific ap-
plications and the limited I/O bandwidth available on modern
high-performance computing systems. Utilizing data compres-
sion in order to lower the degree of I/O activity offers a promis-
ing means to addressing this problem. However, the standard
compression algorithms previously explored for such use offer
limited gains on both the end-to-end throughput and storage
fronts. In this paper, we introduce an in-situ compression
scheme aimed at improving end-to-end I/O throughput as well
as reduction of dataset size. Our technique, PRIMACY (PRe-
conditioning Id-MApper for Compressing incompressibilitY),
acts as a preconditioner for standard compression libraries by
modifying representation of original floating-point scientific
data to increase byte-level repeatability, allowing standard
lossless compressors to take advantage of their entropy-based
byte-level encoding schemes. We additionally present a theo-
retical model for compression efficiency in high-performance
computing environments and evaluate the efficiency of our
approach via comparative analysis. Based on our evaluations
on 20 real-world scientific datasets, PRIMACY achieved up to
38% and 22% improvements upon standard end-to-end write
and read throughputs respectively in addition to a 25% increase
in compression ratios paired with 3-to-4-fold improvement in
both compression and decompression throughput over general
purpose compressors.

Keywords-Lossless Compression; Performance Modeling; I/O

I. INTRODUCTION

The recent years have made us aware of the ever-growing
gap between the complexity and size of the data produced
in scientific applications and the available I/O bandwidth.
This gap has lead to a crucial bottleneck in read and write
performance for these applications. This issue is further
worsened when one considers the increase in frequency of
checkpoint writes due to higher potential of node failure at
such a scale.

One promising approach for improving I/O rates involves
taking advantage of data compression techniques to re-

duce the amount of data transferred during read and write
processes. Previous research in this area has shown the
strong potential for data compression techniques to increase
effective network bandwidth [22]. However, this study has
assumed that the actual compression and decompression
of data would be costless given a sufficiently large num-
ber of nodes during compression and a dedicated node
for decompression. In reality, the improvement of network
bandwidth via compression must inevitably come at the
non-zero cost of compressing the data before transferring
it over the network. This cost cannot be trivialized both
due to the inherently large sizes of data that are written as
well as the transmission of variable length segments from
compute nodes. Unfortunately, the compression throughputs
and ratios that standard reduction methods such as zlib,
bzlib2 and lzo offer actually offset most of the end-to-
end gain yielded by improved effective network bandwidth,
thus hardly increasing (and in the worst cases even reducing)
the end-to-end I/O throughput from that of uncompressed
reads and writes. The added time cost for compression
renders standard reduction algorithms unsuitable for many
crucial scientific applications, especially those using simu-
lation checkpoint & restart data. These applications produce
massive amounts of data and could benefit significantly from
in-situ high-performance lossless compression (operating on
data during the simulation, while data still resides in memory
either in the application or user space).

Furthermore, the complexity of data produced by sci-
entific simulations challenges these general purpose com-
pression frameworks, restricting their capacity to effectively
reduce data. Specifically, these lossless compressors offer at
best 20% reduction on many of the tested scientific double-
precision floating-point datasets—these datasets are dubbed
hard-to-compress due to the high degree of entropy exhibited
by the data (the degree of entropy is typically inversely
correlated with the extent of gains in data reduction that
standard compressors are able to provide).

The ideal solution to this problem of limited I/O rates
from the data compression perspective is the use of a high-



performance lossless compressor that offers both fast and
efficient data reduction. Unfortunately, reduction techniques
in the past have offered either high compression throughput
or high compression ratio, as the two have traditionally been
in conflict (Equations (1) and (2) give the basic formulas
for these metrics). Libraries which deliver relatively high
compression and decompression throughputs tend to yield
low compression ratios, whereas those that provide high
compression ratios tend to be slow.

Compression Ratio (CR) =
Original Data Size

Compressed Data Size
(1)

Throughput =
Original Data Size

Runtime
(2)

However, we argue that these goals can be mutually
satisfied. Our chief insight is that by modifying the rep-
resentation of raw, hard-to-compress data to emulate more
highly-compressible data, we can achieve gains in both
throughput and compression ratio. These improvements can
allow us to effectively hide the cost of compression in the
I/O pipeline while reducing dataset size by an even greater
amount. Furthermore, if our modified data compresses well
enough at a high throughput, we can not only avoid reducing
the end-to-end I/O throughput due to compression, but
rather increase it while both augmenting effective network
bandwidth and disk storage capacity.

With this motivation, we introduce a preconditioning
technique that enables faster and more efficient lossless
reduction of scientific floating-point data via the use of
standard compression algorithms. Our strategy is intuitively
supported by the frequent use of preconditioners for improv-
ing the convergence of iterative solvers in the linear algebra
domain (such as Quasi-Minimal Residual [7], Algebraic
Multigrid [5], LDL [2]). Preconditioning processes such as
QR-factorization and LU-decomposition are widely used by
scientific domains to improve the rate of convergence for
iterative solvers. To the extent of our knowledge, the use
of such preconditioning techniques that optimize input for
solvers is relatively unexplored in the context of lossless data
compression.

The preconditioner we introduce is called PRI-
MACY (PReconditioning Id-MApper for Compressing in-
compressibilitY). PRIMACY enables fast analysis of data
and uses the information it finds in order to create an
arrangement of data that improves compressibility of input
for use with standard entropy-based lossless compression
frameworks. Our preconditioner creates a one-to-one map-
ping between byte-sequences in the original data and a
frequency based permutation of identification values (IDs).
Specifically, the ID assignment is based on a probabilistic
analysis of which patterns (byte-sequences) appear with the
most and least frequency in the data. By representing fre-
quently occurring byte-sequences with strategically assigned
identification values, we are able to increase the repeatability

in data on an individual byte basis, lending well to the abili-
ties of standard byte-level lossless compressors (the “solver”
segment of the data compression pipeline). Because standard
compressors use entropy encoding techniques, they take
utmost advantage of the MDL (minimum description length)
principle [9], which states that any regularity in a given set
of data can be used to compress the data. By modifying the
organization of data to increase repeatability, we can achieve
improvements in both compression throughput and ratio, and
thus improve rates for the end-to-end I/O pipeline.

We tested our method on a total of 20 scientific double-
precision floating-point datasets spanning various applica-
tion domains [3], [4], [8], [16], [20]. When run on the Jaguar
XK6 cluster, PRIMACY achieved end-to-end throughput
improvements of up to 38% and 22% over standard writes
and reads respectively. Furthermore, PRIMACY obtained
a better compression ratio on 19 of 20 (95%) datasets
when compared to standalone zlib compression, one of
the most commonly used scientific compression libraries due
to it’s balance between the very fast but poor compression
of lzo and the very slow but substantial compression of
bzlib2. The improvement on compression ratio reached up
to 25% in some cases, and averaged at approximately 13%
over zlib. Throughput improvements were on average 3−4
times in regards to both compression and decompression.

Lastly, we realize that though we show performance gains
when using our compression approach on a leadership-
class HPC system, we cannot hope to evaluate the extent
of gains on all possible cluster configurations. For this
reason, we provide an analytical performance model that can
enable prediction of I/O performance on target systems both
with and without applied compression and additionally help
application developers in choosing particular configurations.

II. METHODOLOGY

A. Overview

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

P
ro

b
a
b

il
it

y
 D

is
tr

ib
u

ti
o

n
 

Bit positions 

GTS_phi num_plasma

obs_temp msg_sweep3D

Figure 1. Probability (p) of occurrence of the most frequent bit value
(either 0 or 1) at each bit position on 4 representative data sets



Due to the high level of precision required by many
scientific applications, floating-point data-types are well-
suited for storing data values produced from simulations.
However, the established IEEE representation of floating-
point numbers inherently gives rise to concerns of overall
compressibility of scientific data. In this paper, we showcase
examples using 64-bit double-precision data, though the
analyses drawn from these examples can be generalized to
floating-point data of other precisions as well. The exponent
portion of each double (within first 2 bytes) stores an integer
value, while the mantissa portion (approximately 6 bytes)
stores the fractional content of the value. While the exponent
portion maintains some degree of compressibility due to
common bytes in integer parts of numbers, the mantissa is
considered to be poorly compressible due to the inherent
randomness in fractional parts, machine approximations, and
calculation roundoffs. A visual depiction of this phenomenon
is given in Figure 1. While the first 2 bytes show regularity
in bit value (p > 0.5) and imply compressibility, the last
6 bytes show a high degree of randomness (p ≈ 0.5) and
imply poor compressibility.

Figure 2. PRIMACY preconditioner workflow

This lack of predictability and the presence of randomness
can be considered as noise in the data. By isolating this
noise from the more repeatable and less-unique portion of
each double, we are able to separate the “signal” and “noise”
portions of the data to a much greater extent than before [14].
Since the degree of randomness in the mantissa portion of
data is generally much higher than in the exponent, it is rea-
sonable to assume that the performance of standard entropy-
based encoding frameworks varies between the two. In fact,
we find that when compressing most datasets, compression
ratio and throughput over the first 2 byte-columns of the
data (exponent portion) is often much higher than that of
all 8 byte-columns (exponent and mantissa). We propose a
method that in many cases improves the overall compression
performance of data over current state-of-the-art lossless
compression libraries by approaching the problem from this
perspective.

In regards to the first two bytes containing the expo-

nent information, we propose a novel method of repre-
sentation that increases the apparent repeatability in byte
values. This allows standard compressors such as zlib and
bzlib2 to take full advantage of their byte-level entropy-
coding schemes [21]. In general, these types of encoders
benefit from application of the MDL principle; thus, any
regularity in data can be used to compress the data with
fewer bits than needed to express it literally.

Our method revolves around creating a one-to-one map-
ping between the set of unique byte-sequences (combination
of the 2 exponent bytes) found in a set of data, and a specific,
statistically determined permutation of identification values.
The nuances in the construction of this mapping result in
a representation of data that is often more repeatable, and
thus more compressible, than the original data. The other six
mantissa bytes per double are passed to the ISOBAR anal-
ysis utility, which uses sampling and statistical analysis to
calculate and assess the degree of compressibility of certain
bytes in order to optimize compression efficiency of the
data [17]. Figure 2 provides an overview of the key steps of
the PRIMACY preconditioner. While the above framework
can be integrated into any stage of the I/O pipeline, coupling
its integration with the data generation phase can result in
reduced data movement through multiple stages; for this
reason, we explore the use of PRIMACY only on compute
nodes in this paper.

B. Data Preprocessing

The data is first split into 3MB sized chunks. Chunking
support allows effective in-situ processing and is a crucial
step in our preconditioner technique. With chunking, we are
able to compress data in a low-memory, high-throughput
manner. The 3MB chunk size was chosen after initial exper-
iments confirmed previous studies showing that compressor
efficiency begins leveling off at this level [10], [21].

Next, for a chunk of N elements, we process an N × 8
matrix of bytes (8 bytes per double), and split the matrix
into two matrices of N × 2 and N × 6 bytes. The N × 2
matrix contains the exponent and first few mantissa bits of
each of the N elements, whereas the N × 6 matrix contains
the remaining mantissa bits.

These exponent and mantissa byte-matrices are written
per chunk to two different files. The file of exponent bytes
is passed along to the remainder of the frequency-based
encoding pipeline. The file of mantissa bytes shows hard-
to-compress characteristics, and is thus passed along to
our ISOBAR analyzer and partitioner (see Sect. II-G) to
improve compressor efficiency in terms of compression and
decompression speeds and compression ratio. Algorithm 1
shows the high-level procedural workflow of preprocessing,
encoding and compression phases of the PRIMACY pre-
conditioner pipeline.



Algorithm 1 PRIMACY Compression
Input:
X—Set of input elements to be compressed
N—Number of elements in {X}
C—Number of elements in a chunk

Code:
to process← N
id← 0
high← 2 # 2 high order bytes per element for frequency encoding
low ← 6 # 6 low order bytes per element for ISOBAR encoding

while to process > 0 do
start← id× C + 1
end← min((id + 1)× C,N)
chunk ← PREP-CHUNK-ARRAY(X, start, end)
freq ← FREQUENCY-ANALYSIS(chunk, high)
I ← GENERATE-INDEX(freq, high)
M ← PREP-HIGH-ORDER-BYTES(chunk, I, high)
L← PREP-LOW-ORDER-BYTES(chunk, low)
M ′ ← ID-COMPRESS(M, I)
L′ ← ISOBAR-COMPRESS(L)
WRITE {I}
WRITE {M ′}
WRITE {L′}
to process← to process− C
id← id + 1

end while

C. Encoding of Byte-Sequences

For a dataset of n doubles, n byte-sequences will be
encountered. However, of these n instances, only a fraction
will be unique over the entirety of the dataset. This is
because almost all scientific data inherently has locality. The
exponent bytes of data are generally found to be within
a range of values. In analyzing our datasets, we found
that this range was rather small—in fact, the majority of
our data had less than 2, 000 unique byte-sequences from
the possible 65, 536. This frequency distribution, skewed
towards a limited number of values, implies that there is a
relatively high degree of compressibility in exponent bytes
from scientific data.

In order to seek improvement in compression of these
byte-sequences, it becomes necessary to look at how the
sequences are interpreted by standard compressors. The
common standard compressors (zlib, bzlib2, and lzo)
are 8-bit encoders and look at patterns in data on a byte-
level [21]. Thus, while high repeatability in byte-sequences
is important to the overall compressibility of data, it is still
of secondary importance to high repeatability in individual
bytes. Transforming data to emulate a higher degree of byte-
level repeatability improves the compressibility of the data.

This notion causes us to pose the following question: how
can we create a bijective mapping between byte-sequences
from original data and new byte-sequences to be used in
transformed data?

We reasoned that since the mapping must be bijective
(unique sequences from the original data must map to unique
sequences from transformed data), it is necessary to examine
how frequently certain byte-sequences appear when creating
a mapping to transformed byte-sequences (identification

values, or IDs). This way, we can aim to take advantage
of the most repeated byte-sequences in the original dataset
when creating a mapping.

Thus, our first step in creating a mapping is to examine
each chunk of data and collect information on how fre-
quently different byte-sequences occur within that chunk.
We then assign the most frequent byte-sequences an identi-
fication value of 0, the next most frequent byte-sequences an
identification value of 1 and so on until all unique sequences
found in the original data are accounted for.

By traversing ascending byte-sequences sorted by de-
scending frequency in assigning identification values, we
represent the most repeated patterns in the original data
with the lowest ID values. On a byte-level, this translates
to having the highest possible frequency of 0-bytes in our
data. The first identification value (representing the most
frequently occurring byte-sequence in the original data) will
be represented as a byte-sequence of two 0-bytes, while
the next 255 most frequent byte-sequences from original
data will be represented as byte-sequences of a single 0-
byte paired with a nonzero byte. This mapping on average
increased the repeatability of the most frequently occuring
data byte by approximately 15% over the 20 datasets used.

D. Byte-level Data Linearization

The previous steps in our process improve compression of
data based on increased repeatability and application of the
MDL principle for entropy-based coders. However, entropy-
based coders often also achieve large compression gains
from run-length encoding, or intelligent representation of
sequentially repeating runs (consecutive occurrences) of the
same byte values with fewer bytes.

To further improve the gain in compression of our trans-
formed data, we vary the byte-level linearization of subse-
quent ID values by compressing the transformed N×8 byte-
matrix column-by-column rather than row-by-row. The driv-
ing motivation behind this choice is that because lower ID
values represent more frequent byte-sequences, the chance
of having runs of the 0-byte in the exponent byte-columns is
high. In essence, column linearization equates to passing our
compressor the transpose of the transformed byte-matrix in-
stead of the original. This allows us to take advantage of the
run-length encoding features of standard compressors and in
many cases substantially improve compression throughput
and ratio over that of row-linearized data.

E. Standard Compression of Encoded Data

The new representation of the original exponent bytes
generally has a higher degree of repeatability than the origi-
nal data due to the probabilistically modeled permutation of
identification values. The final step in our pipeline for com-
pressing exponent bytes is compression on a per-chunk basis
using a standard entropy-based lossless compressor (such as
zlib, bzlib2 or lzo). These compressors become more



effective in the reduction of data in question because of the
increased degree of byte-repeatability artificially generated
in the new data.

F. Index Generation

Many standard lossless compression frameworks require
the use of metadata to reconstruct original data from encoded
data. Metadata is generally used by a decompressor to define
how to interpret coded symbols and phrases. Similarly,
PRIMACY uses an indexing file per each chunk as metadata
to associate ID values to their corresponding byte-sequences
in the original data. We only assign IDs for those byte-
sequences that actually appear in the original data. Identifi-
cation values start from 0 and continue in increasing order
based on the relative frequencies of byte-sequences.

Currently, the frequency analysis and indexing process is
conducted on a per-chunk basis. Our study of correlations
between frequency vectors of subsequent chunks revealed
that the “niceness of fit” that a single chunk’s index provides
on the whole data is data-dependent. While a few of the
datasets would compress well using only the index from
the first data chunk instead of processing an index for
every chunk, many would show a significant decline in
compression ratio. In the future, we plan to explore the
design of a more intelligent indexing scheme. One possible
method of implementing such a design would be indexing
a certain chunk only when its frequency analysis correlates
poorly with that of the past chunk. This method would likely
preserve most of the compression ratio while providing
improved throughput over the current implementation.

G. Optimizing Mantissa Compressibility

Thus far, the extent of discussion has revolved around
compression of the exponent information per double. How-
ever, we propose the use of another technique in regards to
the compression of the remaining six bytes containing only
mantissa information. Since mantissa bytes have a very high
number of unique values, most of the unique values have
correspondingly low frequencies and are highly interspersed,
resulting in poor repeatability in identification values when
applying the same method used on the exponent bytes.

As seen in Figure 3(a), frequent byte-sequences are con-
centrated in small ranges that comprise the majority of
the data in the exponent bytes of each double. Thus, our
preconditioner can take advantage of the low number of
unique values by assigning them low ID values, effectively
increasing byte-level repeatability. However, Figure 3(b)
shows the frequency of different values in the mantissa
bytes of the same datasets. In the four datasets shown, there
are many nonzero frequencies—though each of these may
appear very few times, the compressor still needs to consider
these bytes when creating the symbol table used to encode
each value.

These high numbers of unique values (each with low
frequency) translates to poor compressibility, due to the
unevenness and lack of skewness in data distribution. The
lack of highly repeatable bytes greatly bottlenecks any
improvements from the compressor [19]. Our ID value
mapping method would not yield desirable results, as PRI-
MACY would have to process data with almost evenly
distributed byte-level frequency. While this method may
yield marginally improved repeatability of data on these
mantissa bytes, it would likely do so at an unreasonable
throughput. Therefore, we propose the use of our ISOBAR
method to determine compressibility of mantissa bytes.
ISOBAR samples and analyzes “high complexity” data to

determine the expected gains from applying compressors to
the entire data [17]. The method works by first performing a
bit-level frequency analysis in regards to whether frequency
of bits in certain positions will be adequate to improve
performance of standard lossless compression algorithms.
If the data is identified as improvable, the data will be
partitioned into “compressible” and “incompressible” pieces
(the definitions for these are determined by empirically
formed threshold values). We are then able to accordingly
compress the classified compressible bytes using zlib and
write out the classified incompressible bytes without wasting
operations on compressing those incompressible bytes. This
ultimately allows us to achieve throughput improvements
without sacrificing almost any data compressibility [15].

III. PERFORMANCE MODELING

A. Parameters
We develop a generic parameterized model to evaluate

the performance of the PRIMACY technique on leadership
class systems. The design parameters taken into considera-
tion and the output variables from the model are shown in
Tables I and II respectively.

Table I
INPUT SYMBOLS FOR THE PERFORMANCE MODELS

Input
Symbol Description

C Chunk size
δ Size of the metadata
α1 Fraction of the chunk that is compressible

α2
Fraction of the lower order chunk that is
compressible

σho
Compression ratio (compressed vs original) on the
higher order bytes of the chunk

σlo
Compression ratio (compressed vs original) on the
lower order chunk

ρ Compute to I/O node ratio

θ
Throughput of the collective network between the
compute and I/O nodes

µw Throughput of the disk writes
Tprec Average preconditioner throughput
Tcomp Compression throughput

We assume a constant chunk size and compute to I/O node
ratio. Data chunks are characterized by their compressible



Byte sequence of exponent bytes (0 – 65535) 

0.000

0.001

0.002

0.003

0.004

0.005

0.006
phi

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
info

0.000

0.003

0.006

0.009

0.012

0.015

0.018
temp

0.000

0.005

0.010

0.015 zeon

N
o

rm
a

li
z
e

d
 F

re
q

u
e
n

c
y
 

(a)

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05
zeon

-3.0E-06

5.0E-06

1.3E-05

2.1E-05

2.9E-05

3.7E-05

4.5E-05
phi

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05
temp

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04
info

Byte sequence of mantissa bytes (0 – 65535) 

N
o

rm
a

li
z
e

d
 F

re
q

u
e
n

c
y
 

(b)

Figure 3. (a) Frequency of all possible byte values in the exponent (first two bytes), (b) Frequency of all possible byte values in the mantissa (last six
bytes)

Table II
OUTPUT SYMBOLS FOR THE PERFORMANCE MODELS

Output
Symbol Description

tprec1
Time to run the PRIMACY preconditioner on the
chunk

tprec2
Time to run the ISOBAR preconditioner on lower
order part of the chunk

tcompress1 Time to compress the higher order bytes

tcompress2
Time to compress the lower order compressible
bytes

ttransfer Transfer time across the network
twrite Time to write data to the disk
ttotal Total end-to-end data transfer time
τ End-to-end (aggregate) throughput

fraction as well as the compression ratio on the compress-
ible fraction, and are written following a bulk-synchronous
parallel I/O model. This is a typical mode of operation for
checkpoint restarts. The throughput of the collective network
is measured at the I/O node. It is defined as the mean
rate at which the I/O node can receive data sent by the
corresponding compute nodes. We also take into account the
metadata overhead imposed by PRIMACY for completeness.
Finally, we leverage the fact that existing staging frameworks
(e.g. ADIOS) provide consistent I/O throughputs.

We evaluate two cases of writing from compute nodes
to disk for comparative purposes. The first is a baseline
case when no compression is performed and data is directly
written to the disk through the I/O nodes. The second uses
PRIMACY compression at the compute nodes. With end-to-
end throughput being the optimization criterion, it is intuitive
that performing compression at the compute nodes is likely
to perform better than on I/O nodes due to the parallel
compression performed at the compute nodes as well as
reduced amount of data being transferred over the network.

In both scenarios, the end-to-end throughput is given by:

τ =
ρ · C
ttotal

(3)

B. Base Case: No compression

In this scenario, the compute nodes simply transfer the
generated simulation data at each time step to the I/O nodes,
which subsequently write the data to disk. The end-to-end
transfer time and throughput in this case are given by :

ttransfer =
(1 + ρ)C

θ
(4)

twrite =
ρC

µw
(5)

ttotal = ttransfer + twrite =
(1 + ρ)C

θ
+
ρC

µw
(6)

Equation 4 takes into account the network contention,
assuming that it scales linearly with the compute to I/O node
ratio.

C. PRIMACY at Compute Nodes

In this case, PRIMACY is integrated at the compute
nodes. Upon generating the data, the compute nodes execute
the PRIMACY preconditioner, thus separating the data into
compressible and incompressible parts. The uncompressed
data is then passed on the to ISOBAR preconditioner, which
further compresses a part of it. Thus, the resulting data
consists of two compressed buffers, the remaining uncom-
pressed part, and the compression metadata. This cumulative
data is then stored on the disk through the I/O nodes. This



case can be modeled as follows:

tprec1 =
C

Tprec
(7)

tprec2 =
(1− α1)C

Tprec
(8)

tcompress1 =
α1 · C
Tcomp

(9)

tcompress2 =
α2(1− α1)C

Tcomp
(10)

ttransfer = (1 + ρ)C

(
α1σho + α2(1− α1)σlo

Tnetwork

)
+ (1 + ρ)C

(
(1− α2)(1− α1)σlo

Tnetwork

)
(11)

twrite = (1 + ρ)C

(
α1σho + α2(1− α1)σlo

µw

)
+ (1 + ρ)C

(
(1− α2)(1− α1)σlo

µw

)
(12)

ttotal = tprec1 + tprec2 + tcompress1 + tcompress2

+ ttransfer + twrite (13)

The read scenarios essentially follow the inverse order of
operations relative to writes, and can be easily modeled in
a manner similar to those for writes. The model results for
both the read and write scenarios are discussed in Section
IV-D. In addition, we also present a comparison of these
results with the actual empirical results in order to evaluate
model correctness on multiple datasets.

IV. RESULTS

A. Environment

Our experiments were conducted on the Cray XK6 Jaguar
cluster at the Oak Ridge Leadership Computing Facility. It
consists of 18, 688 compute systems, each with a 16-core
2.2 GHz AMD Opteron 6724 processor and 32GB of RAM.
It uses the Lustre [18] file system for parallel I/O and a
high performance Gemini interconnect for communication.
The compute-I/O node ratio for all experiments concerning
a staging environment is kept fixed at 8 : 1.

B. Datasets

The datasets used in the performance evaluation com-
prised mainly of hard-to-compress scientific datasets used
in various applications — specifically, the datasets were
gathered from fusion simulations (GTS), astrophysics simu-
lations (FLASH), parallel benchmarks, numeric simulations
and satellite measurements. We compared each compressor
on 20 different datasets, all of which are double-precision
floats. However, PRIMACY can also perform effectively
on floating-point data of higher precisions due to the nature
of its mapping scheme. In interest of space, more detailed
information about the datasets can be found online [1].

C. Compressor Use

We compared the performance of zlib and lzo general-
purpose lossless compressors for end-to-end data reads and
writes on three scientific datasets. We did not compare with
bzlib2 since its compression and decompression speeds
are not suitable for in-situ processing applications. We used
the num_comet, flash_velx, and obs_temp datasets
for our analyses [1]. We specifically chose these datasets to
experiment with since they are representative of the entire
compressibility spectrum (as seen from Table III).

The results are shown in Figures 4(a) and 4(b). The write
results indicate that zlib and lzo exhibit an end-to-end
throughput improvement of 8% and 10% respectively over
the null case. For reads, however, both zlib and lzo
perform worse than the null case, exhibiting 7% and 4%
respective reduction in performance.

It can be observed that while zlib provides approxi-
mately equivalent throughput gains as compared to lzo, it
provides significantly better compression on most datasets.
For many users (especially in the in-situ processing com-
munity), the balance of compression ratio and throughput
that zlib attains as compared to bzlib2 and lzo is its
primary selling point for use. Based upon these experimental
results, we use PRIMACY with zlib compression for
further evaluation.

D. End-to-end Throughput

We conducted experiments in a staging environment on
the Jaguar XK6 cluster to evaluate the end-to-end throughput
performance upon using PRIMACY compression on the
same three datasets at the compute nodes as compared to
using zlib and lzo (compression of the entire chunk),
and the null case (no compression).

Figure 4(a) shows the write micro-benchmark results. It
can be seen the using PRIMACY with zlib results in an
average performance gain of 27% over the null case through-
put for the three datasets. In contrast, zlib and lzo vanilla
compression yield an average improvement of 8% and 10%
respectively over the null case. The theoretical improvement
predictions are consistent with the corresponding empirical
values. Thus, PRIMACY with zlib outperforms zlib
and lzo vanilla compression for all the three datasets.

The read micro-benchmark results are presented in Figure
4(b). Decompression using PRIMACY with zlib results
in an average performance gain of 19% over the null
case throughput. Comparatively, zlib and lzo vanilla
decompression yield an average reduction of 7% and 4%
respectively, in performance over the null case. This suggests
that vanilla compression using either of the algorithms is not
an optimal strategy for WORM usage patterns. Contrary to
this, PRIMACY retains a large fraction of the performance
gains observed for the write scenario. Thus it exhibits
symmetric characteristics with respect to writes as well as



0

5

10

15

20

25

PT PE ZT ZE LT LE

E
n

d
-t

o
-e

n
d

 W
ri

te
 T

h
ro

u
g

h
p

u
t 

(M
B

/s
) 

num_comet flash_velx obs_temp

(a)

0

20

40

60

80

100

120

140

PT PE ZT ZE LT LE

E
n

d
-t

o
-e

n
d

 R
e

a
d

 T
h

ro
u

g
h

p
u

t 
(M

B
/s

) num_comet flash_velx obs_temp

(b)

Figure 4. Comparison of accuracy of performance model for different compression routines on 3 scientific datasets, for end-to-end write (a) and read (b)
throughputs. Prefixes P, Z and L stand for PRIMACY, zlib and lzo, respectively. Suffixes E and T represent emperically observed and theoretically
estimated values, respectively.

reads. Again, the theoretical predictions are consistent with
the empirical values.

The results clearly articulate that the PRIMACY com-
pression technique gives significant performance gains even
on hard-to-compress datasets for writes as well as reads.
Moreover, the consistency between the theoretical and em-
pirical results for both writes and reads suggests that the
models are generic and do accurately capture the algorithm
modus operandi. These models can be used to predict
algorithm performance on a variety of target systems.

E. Compression Ratio Performance

Table III displays the results of our experiments in terms
of compression ratio (CR). PRIMACY yields higher com-
pression ratio in all but one dataset (95%) compared to
zlib. The particular reason for the decline in performance
on the msg sppm dataset is that the data already exhibited
certain desirable characteristics of byte-sequence frequency
(known as easy-to-compress), causing our method to be
relatively ineffectual, as the indexing overhead slightly in-
creased the size of original data. The difference in this
specific dataset, msg sppm, is a relatively small amount
when considering the magnitude of the compression ratio (as
the compression ratio increases, differences in compression
ratio translate to less difference in the resulting compressed
size). For example, in this case the actual compressed file
size differs by less than 3%, while in the case of gts phi nl,
which has a smaller numeric difference in compression ratio,
the compressed dataset sizes differ by nearly 9%. The latter
case is representative of the majority of runs on datasets
that we tested on, as our method generally surpasses the
compression ability of zlib. Specifically, our compression
ratios are on average 13% higher than zlib for the used
datasets.

F. (De-)Compression Throughput

Table III shows the compression and decompression
throughputs for PRIMACY compared to zlib. Compres-
sion throughput (CTP) is crucial in determining whether data
can be compressed in a time-efficient manner—utilities with
high compression throughputs and appropriate algorithmic
design are generally strong candidates for in-situ processing.
Decompression throughput (DTP) is important in determin-
ing the accessibility of data once stored. A compression
framework that has very low decompression throughput may
take exorbitant amounts of time to recreate original data
from compressed data. This time is often very valuable
insofar as to ensure the availability of data for analysis and
visualization operations once decompressed. High decom-
pression throughput allows data to be reconstructed quickly
for such applications.

PRIMACY achieved better compression throughputs than
zlib on all but one of the datasets we tested on. Though
the PRIMACY pipeline utilizes zlib, and is effectively
bottlenecked by compressor performance, our more optimal
arrangement of byte-frequency upon original data improves
compressor efficiency in terms of not only compression
ratio, but also speed. Additionally, the use of the ISOBAR
analyzer and partitioner allows us to avoid spending time on
compressing mantissa bytes that give a very poor trade-off
on compression ratio for time spent, effectively allowing us
to perform better than the use of zlib on all 8 bytes for each
double. The only dataset that did not see an improvement
was msg sppm for the same reasons as described above.
On average, PRIMACY shows compression throughputs
between 3–4 times faster than zlib.

PRIMACY also resulted in better decompression
throughputs than zlib on every dataset we tested on. Since
not all of the original data merits compression, not all of
the compressed data merits decompression. Thus, decom-



Table III
PERFORMANCE COMPARISON BETWEEN ZLIB AND PRIMACY

Dataset CR Linearization CR CTP (MB/s) DTP (MB/s)
zlib PRIMACY zlib PRIMACY zlib PRIMACY zlib PRIMACY

gts chkp zeon 1.04 1.14 1.04 1.12 18.23 84.87 87.13 275.22
gts chkp zion 1.04 1.16 1.04 1.12 18.21 88.93 90.83 279.96

gts phi l 1.04 1.15 1.04 1.11 17.14 54.19 95.42 201.01
gts phi nl 1.05 1.15 1.04 1.12 17.02 54.27 89.25 202.20

flash gamc 1.29 1.47 1.16 1.32 20.92 57.06 64.4 214.99
flash velx 1.11 1.31 1.05 1.15 19.04 184.64 76.47 382.16
flash vely 1.14 1.31 1.06 1.16 19.14 183.92 73.04 380.74

msg bt 1.13 1.31 1.08 1.14 19.23 23.64 85.55 149.91
msg lu 1.06 1.24 1.04 1.12 17.57 133.92 89.57 317.60
msg sp 1.10 1.30 1.04 1.14 18.80 76.05 76.37 257.28

msg sppm 7.42 7.17 2.13 1.99 77.35 66.86 32.11 198.91
msg sweep3d 1.09 1.31 1.07 1.17 18.29 24.52 84.13 238.22

num brain 1.06 1.24 1.06 1.17 17.69 134.29 84.94 329.86
num comet 1.16 1.27 1.13 1.17 17.13 19.73 83.02 117.76

num control 1.06 1.13 1.02 1.08 17.50 21.11 93.6 193.97
num plasma 1.78 2.16 1.37 1.50 28.31 37.32 67.15 157.42

obs error 1.44 1.59 1.16 1.26 24.21 26.37 69.13 137.68
obs info 1.15 1.25 1.06 1.15 19.82 130.02 86.59 335.65

obs spitzer 1.23 1.39 1.23 1.38 18.65 22.07 65.39 113.98
obs temp 1.04 1.14 1.04 1.14 17.76 89.40 88.99 305.78

pression routines are generally applied to data that is effi-
ciently processed with zlib’s decompressor and avoided on
practically incompressible and compressor inefficient data.
On average, PRIMACY shows decompression throughputs
between 3–4 times faster than zlib and is approximately
in the 150–300MB/s range.

G. Effects of User-controlled Linearization

A key requirement for general lossless compression
frameworks is the capacity to provide robust performance
without consideration to the particular data model that a
scientific application uses. For example, XGC fusion parti-
cles are mapped to a toroidal geometry and defined by their
radian, toroidal, and poloidal dimensions [11]. With regard
to disk access, disks may linearize data to fit a space-filling
curve to improve access times, such as a Hilbert curve [12].
In many scenarios, users can choose to linearize data in a
specific format, often to make operating on the data easier.

To show that PRIMACY has applicability to various
linearizations of scientific data, we conducted an experiment
to assess the relative performance of PRIMACY to zlib
on permutations of the original datasets. The results are por-
trayed in Table III. The results are consistent with those of
compression ratio on the original data. Though the average
compression ratios of permuted data are less than those of
original data (due to loss of compression through run-length
encoding), the permutation did not noticeably change the
improvement that PRIMACY achieves over zlib on all
but one (95%) dataset.

H. Effects of Byte-Level Organization

Since we utilize a byte-level compressor (zlib) that uses
repeatability to compress data, byte-level linearization is an
important factor in influencing compression ratio.

Our experiments show that column-based linearization
yield superior compression results when compressing identi-
fication values with zlib, due to run-length encoding gains.
Compressing these bytes in column-order instead of row-
order yields an 8-10% improvement in compression ratios
and roughly a 20% increase in compression throughput of
the identification values.

The impact of byte-level linearization on ISOBAR-
identified compressible mantissa bytes is data-dependent,
since the entropy of mantissa bytes is generally very high
due to the large number of unique values. Our experiments
revealed that compression ratio gains were seen in almost
equivalent number of datasets using row and column lin-
earization, but were trivial. Additionally, throughput gains
obtained from zlib by column linearizing the mantissa
bytes were generally offset by the cost of linearization.

V. RELATED WORK

Though data compression has been explored for use in
order to reduce data in post-simulation contexts, the notion
of making compression a viable tool to reduce I/O activity
has only recently been given attention.

Filgueira et al. presented the Two-Phase Compressed I/O
technique, which involves compression of data on compute
nodes before transferring over the netwok, with the hopes of
reducing total execution time [6]. They use lzo instead of
zlib, due to the higher compression/decompression speeds.
However, the results obtained from this study show that
while compression can yield improvements in execution time
when used on integer data, it tends to substantially worsen
execution time (in some cases over 200%) when applied
to floating-point data. In fact, only one dataset showed
improvement in execution time for floating-point data. This
characteristic is undesirable when considering that a majority
of scientific applications produce floating-point data.



Welton et al. considered the use of compression as a
potential means for improving network bandwidth [22].
Upon conducting a study using several compressors (zlib,
bzlib2 and lzo), the conclusion was drawn that com-
pression (using zlib) was suitable at a compute-node
stage for improved network transfer bandwidth and rates.
Using a theoretical model, the study additionally projected
that such a technique could be incorporated in scientific
applications to yield improved end-to-end throughput. How-
ever, this model makes the assumption that compression
and decompression costs would be negligible with sufficient
nodes and does not factor in these costs when calculating
performance gains. We argue that due to the sheer size of
the data as well as the communication bottleneck involving
transmitting varying length offsets, the overhead due to
compression/decompression cannot be trivialized when con-
sidering end-to-end throughput. Both our empirical results
and performance model substantiate this claim.

To the best of our knowledge, data preconditioning to
optimize compression is a rather unexplored area of study.
However, as a result of the importance of lossless compres-
sion techniques and their applications to the information
storage and scientific communities, there is a substantial
amount of work that has been put into the development
of other notable data reduction frameworks that aim to
improve compression ratio or throughput. In this section,
we reference and compare the performance of these other
top-ranked utilities to PRIMACY.

The most commonly used standard lossless compressors
for information storage purposes are zlib, bzlib2 and
lzo. In the context of scientific data management, bzlib2
is used less frequently than zlib because of its extremely
low throughput, despite often improved compression; lzo is
used less frequently than zlib due to its almost negligible
compression, despite extremely high throughput. Given the
results achieved from using these techniques, it is apparent
that their performance leaves much to be desired. In fact,
these compressors offered no more than a few percent
reduction of many of the original datasets we tested upon.
By including our method as a precursor to standard compres-
sion, we are able to improve overall compression throughput
and ratio with marginal overhead as a result of our pre-
conditioning technique. Though results in this paper have
been limited to improvements upon the compressor with the
best vanilla compression results (zlib), PRIMACY shows
substantial improvements on both compression ratio and
throughput using bzlib2 and lzo. Throughput figures,
though improved upon standalone bzlib2, are still too low
for in-situ processing.
fpzip [13] and fpc [3] are two other notable tools used

for scientific double-precision data compression. These tools
use predictive coding rather than entropy coding techniques
to reduce data. Predictive coding does not consider byte-
level frequency of data, but relies on the accuracy of

data prediction algorithms (fpzip uses an n-dimensional
Lorenzo prediction algorithm where n is the data dimension-
ality while fpc uses both the fcm and dfcm algorithms) to
forecast subsequent data values in order to compress data,
and thus does not lend well to the use of our entropy-based
preconditioning approach. In our experiments, we found that
PRIMACY achieves a better compression ratio than fpc on
all but four (80%) of the datasets, and better than fpzip
on all but seven (65%) of the datasets. Comparatively,
PRIMACY achieves superior compression throughputs than
both fpzip and fpc each on all but seven of the datasets
(65%), though the sets that it performs better on are different
between fpzip and fpc. On average, PRIMACY achieved
throughput improvements of almost 2 times in regards to
fpzip and 3 times in regards to fpc.

While both fpzip and fpc offer competitive compres-
sion ratios and throughputs, they are more prone to poor per-
formance due to the nature of the prediction algorithms used.
These algorithms rely heavily on dimensional correlation of
data and predict poorly in turbulent data, resulting in poor
compression ratio. Furthermore, varying data organization
can have a significantly negative impact on the degree
of compression attained. In experiments conducted upon
reorganized data, we found that PRIMACY performs better
than fpzip on all but one (95%) of the datasets and better
than fpc on all (100%) of the datasets. In these cases,
PRIMACY shows improvements of approximately 9% over
fpzip and 14% over fpc on compression ratio. Sum-
marily, PRIMACY shows improved and more consistent
compression ratio and throughput performance over both the
fpzip and fpc compressors.

VI. CONCLUSION

Improving data compression technology is a promising
approach in order to lessen the burden on I/O in HPC
systems. Fast and effective compression techniques can yield
gains in not only end-to-end I/O throughput, but also in
effective network bandwidth and disk storage capacity. In
this paper, we introduced a new technique called PRIMACY
that acts as a preconditioner for reduction of floating-point
scientific datasets via standard lossless compression solvers.
PRIMACY conducts a statistical analysis to determine the
frequencies of occurrence of various byte-sequences in the
exponent bytes of the original data. Based on frequency
of occurrence, a probabalistically-aware mapping function
assigns identification values to byte-sequences, modifying
their representation to emulate a higher degree of compress-
ibility due to repeated byte values. This procedure allows
standard lossless compressors such as zlib to extract a
greater degree of compression given their byte-level entropy
coding schemes at speeds suitable for in-situ processing.

When tested on an array of scientific datasets on the
Jaguar XK6 cluster, PRIMACY improved upon standard
end-to-end write and read speeds by up to 38% and 22%



respectively and showed high compression and decompres-
sion throughput improvements (as much as 160 MB/s in
compression and 307 MB/s in decompression) in addition
to an improved compression ratio (up to 25%) compared to
the zlib standard compressor.

VII. ACKNOWLEDGEMENT

We would like to thank ORNL’s OLCF leadership class
computing facility for the use of their resources. We would
also like to thank the development teams of the XGC-1,
S3D, and GTS simulations for the data used in this paper.
This work was supported in part by the U.S. Department
of Energy, Office of Science and the U.S. National Sci-
ence Foundation (Expeditions in Computing). Oak Ridge
National Laboratory is managed by UT-Battelle for the LLC
U.S. D.O.E. under contract no. DEAC05-00OR22725.

REFERENCES

[1] Datasets, 2012. http://www4.ncsu.edu/∼nashah3/PRIMACY/
datasets.html.

[2] M. Benzi. Preconditioning techniques for large linear
systems: a survey. Journal of Computational Physics,
182(2):418–477, November 2002.

[3] M. Burtscher and P. Ratanaworabhan. FPC: A high-speed
compressor for double-precision floating-point data. IEEE
Transactions on Computers, 58:18–31, 2009.

[4] M. Burtscher and I. Szczyrba. Numerical modeling of brain
dynamics in traumatic situations - Impulsive Translations. In
Mathematics and Engineering Techniques in Medicine and
Biological Scienes, pages 205–211, 2005.

[5] R. D. Falgout. An introduction to Algebraic Multigrid.
Computing in Science and Engineering, 8:24–33, November
2006.

[6] R. Filgueira, D. E. Singh, J. C. Pichel, and J. Carretero.
Exploiting data compression in collective I/O techniques.
In International Conference on Cluster Computing, CLUS-
TER ’08, pages 479–485. IEEE, 2008.

[7] R. W. Freund and N. M. Nachtigal. QMR: A quasi-
minimal residual method for non-Hermitian linear systems.
Numerische Mathematik, 60(1):315–339, 1991.

[8] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, J. W. Truran, and
H. Tufo. FLASH: An adaptive mesh hydrodynamics code
for modeling astrophysical thermonuclear flashes. The Astro-
physical Journal Supplement Series, 131:273–334, November
2000.

[9] P. D. Grünwald. The minimum description length principle.
The MIT Press, 2007.

[10] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu.
RCFile: a fast and space-efficient data placement structure
in MapReduce-based warehouse systems. In Proceedings
of the 27th International Conference on Data Engineering,
ICDE ’11, pages 1199–1208. IEEE, 2011.

[11] S. Ku, C.S. Chang, and P. H. Diamond. Full-f gyrokinetic
particle simulation of centrally heated global ITG turbulence
from magnetic axis to edge pedestal top in a realistic tokamak
geometry. Nuclear Fusion, 49:115021, 2009.

[12] J. K. Lawder and P. J. H. King. Querying multi-dimensional
data indexed using the Hilbert Space-Filling Curve. ACM
SIGMOD Record, 30(1):19–24, March 2001.

[13] P. Lindstrom and M. Isenburg. Fast and efficient compression
of floating-point data. IEEE Transactions on Visualization and
Computer Graphics, 12(5):1245–1250, 2006.

[14] B. K. Natarajan. Filtering random noise via data compression.
Data Compression Conference, pages 60–69, 1993.

[15] W. D. Pence, R. Seaman, and R. L. White. Lossless astronom-
ical image compression and the effects of noise. Publications
of the Astronomical Society of the Pacific, 121(878):414–427,
April 2009.

[16] J. M. Prusa, P. K. Smolarkiewicz, and A. A. Wyszogrodzki.
Simulations of gravity wave induced turbulence using 512 PE
CRAY T3E. International Journal of Applied Mathematics
and Computational Science, 11(4):883–898, 2001.

[17] E. R. Schendel, Y. Jin, N. Shah, J. Chen, C.S. Chang,
S-H. Ku, S. Ethier, S. Klasky, R. Latham, R. Ross, and
N. F. Samatova. ISOBAR preconditioner for effective and
high-throughput lossless data compression. In Proceedings
of the 28th International Conference on Data Engineering,
ICDE ’12, pages 138–149. IEEE, 2012.

[18] P. Schwan. Lustre: Building a file system for 1000-node
clusters. In Proceedings of the 2003 Linux Symposium, pages
400–407, July 2003.

[19] Y. Sehoon and W. A. Pearlman. Critical encoding rate
in combined denoising and compression. In International
Conference on Image Processing, volume 3 of ICIP 2005,
page 341. IEEE, September 2005.

[20] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.
Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam.
Gyro-kinetic simulation of global turbulent transport proper-
ties in Tokamak experiments. Physics of Plasmas, 13:092505,
2006.

[21] T. A. Welch. A technique for high-performance data com-
pression. Computer, 17(6):8–19, June 1984.

[22] B. Welton, D. Kimpe, J. Cope, C. Patrick, K. Iskra, and
R. Ross. Improving I/O forwarding throughput with data com-
pression. In International Conference on Cluster Computing,
CLUSTER ’11, pages 438–445. IEEE, 2011.


