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ABSTRACT

Explainable machine learning methods have attracted increased
interest in recent years. In this work, we pose and study the niche
detection problem, which imposes an explainable lens on the clas-
sical problem of co-clustering interactions across two modes. In
the niche detection problem, our goal is to identify niches, or co-
clusters with node-attribute oriented explanations. Niche detection
is applicable to many social content consumption scenarios, where
an end goal is to describe and distill high-level insights about user-
content associations: not only that certain users like certain types
of content, but rather the types of users and content, explained
via node attributes. Some examples are an e-commerce platform
with who-buys-what interactions and user and product attributes,
or a mobile call platform with who-calls-whom interactions and
user attributes. Discovering and characterizing niches has powerful
implications for user behavior understanding, as well as marketing
and targeted content production. Unlike prior works, ours focuses
on the intersection of explainable methods and co-clustering. First,
we formalize the niche detection problem and discuss preliminaries.
Next, we design an end-to-end framework, NED, which operates
in two steps: discovering co-clusters of user behaviors based on
interaction densities, and explaining them using attributes of in-
volved nodes. Finally, we show experimental results on several
public datasets, as well as a large-scale industrial dataset from
Snapchat, demonstrating that NED improves in both co-clustering
(≈ 20% accuracy) and explanation-related objectives (≈ 12% average
precision) compared to state-of-the-art methods.
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1 INTRODUCTION

Developing features that attract and appeal to customers is criti-
cal to companies, as it determines their success and revenue [22].
Recently, platforms that create, serve, and curate content such as
Snapchat, Netflix, and Youtube use data-driven approaches to at-
tract and maintain a large and diverse userbase. This approach has
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successfully promoted mass engagement and user traction on pop-
ular content via recommendation systems: the larger the number
of users that interact with a piece of content, the more that piece
of content tends to be promoted. While this model is successful,
engineering the process of content creation to generate this level
of appeal by automating the process of identifying market niches,
is quite challenging.
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Figure 1: Our niche detection framework, NED: (a) takes as inputs

user-content interactions, user attributes, and content attributes,

(b) mines coherent co-clusters from interaction data, and (c) out-

puts niches, or co-clusters imbued with concise, user and content

attribute-oriented explanations.

Specifically, in creating content, it is beneficial to understand the
attributes that make a particular type of content (e.g food-related
videos) attractive to specific markets that might be under served
by the platform (e.g. 18-24 year old women in Australia). Thus,
to improve targeting and to create and promote content that will
likely better retain, engage, and satisfy target audiences, we pro-
pose a method for self-explaining niche detection in user content
consumption data. Our work characterizes niches as outstanding
co-clusters in user-content interaction graph data, imbued with
user and content-oriented attributed co-cluster explanations which
designate audience and content types. At its heart, our work ad-
dresses the scenario: Consider that we have a rich user-liked-content
interaction graph, and nodal attributes describing the users (e.g. user
profile, demographics information, device types) and content (e.g.
creator profile, category), how can we explain and make sense of it?

Our work lies at the intersection of co-clustering and explain-
able machine learning, though the problem we aim to solve is one
that other works do not. Co-clustering is a method that aims to
simultaneously cluster both users and content (interchangeably,
products) simultaneously so that users and content can be orga-
nized into homogeneous blocks. This approach is helpful to partially
answer our research question. In the literature, many co-clustering
methods [3, 19, 26] have been proposed. For instance, [3, 12] take
information theoretic approaches to derive co-clusters by maximiz-
ing preserved mutual information and entropy between users and
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items. More recently, [62, 63] utilize deep autoencoders to gener-
ate low-dimensional representations for users and products, and
employ Gaussian Mixture Models to infer the co-clusters. Several
works have also employed Non-Negative Matrix Tri-Factorization
(NMTF) [21, 45, 52], turning the co-clustering problem into a ma-
trix approximation problem [25]. Although these methods can be
utilized to identify outstanding co-clusters, they are inherently lim-
ited in their capacity to explain the interactions. This is primarily
because they cannot leverage user or item attributes to explain
the discovered co-clusters, and thus have difficulty summarizing
interactions between diverse user and item groups concisely. Ex-
plainability needs are paramount for the task we aim to solve in
practice: ultimately, any discovered data-driven insights must be
acted upon by creators to dictate a content creation strategy. More-
over, while explainability has become a focal point of recent works
in machine learning [17, 29], there is no prior work on imbuing
co-clusters with explanations, which is an important facet of the
niche detection problem we propose in this work.

Summarily, addressing the niche detection problem has clearly
high value for content strategists and platforms, but it poses several
notable challenges. Firstly, it requires powerful and performant,
large-scale co-clustering, to discover coherent and outstanding
statistical regularities in user-content interaction data. Secondly, it
requires a component to leverage nodal attributes available on users
and content to concisely explain the associations between users
and content which a co-cluster is characterized by, in a fashion
interpretable to humans who must act as decision-makers on the
basis of the explanations. The output of such a method may deliver
informative insights from crude user-content interaction data, such
as “female users generally enjoy skin-care related content more
than others” or “18-24 male users enjoy bodybuilding content more
than others,” which can be acted upon and guide creators and
strategists. More importantly than discovering popular or globally
intuitive patterns, the methodology of a successful niche detection
framework offers the promise of enabling the discovery of smaller,
underserved and non-apparent niches which can inform highly
localized and tailored content solutions for a subgroup. In this
work, we formally pose the niche detection problem, and propose
a framework, NED, to tackle it by carefully designing the two
components: Figure 1 illustrates the high-level process. We further
conduct extensive experiments demonstrating NED’s success in
discovering coherent niches, and outperformance of alternative
approaches. Our contributions are:

• Novel Problem Formulation: We formally pose the niche
detection problem for user behavior modeling. The problem
is guided by two sub-problems: discovering co-clusters of
user behaviors based on interaction densities, and explaining
them using attributes of involved nodes via feature learning.

• Novel Algorithm: We propose an intuitive, simple, effi-
cient, and effective method, NED, a niche detection frame-
work, which proposes mutual information-inspired vari-
ant of NMTF for co-clustering, and a mutual information-
inspired solution for explainable feature selection. To our
knowledge, NED is the first approach at explainable co-
clustering. Moreover, to evaluate niche quality, we propose
a compression-based score to bridge the detected co-clusters
and the feature explanations.

Symbols Definition

X, x, 𝑥 a matrix, column vector and scalar
A,B, S user cluster, product cluster and summary matrix
U𝑓 , P𝑓 user attributes matrix, product attributes matrix

U𝑝𝑓
, P𝑢𝑓 user to product attributes matrix, product to user attributes matrix

𝐼 , 𝐽 , 𝐹1 , 𝐹2 #users, #products, #user features, #product features,
𝑀 , 𝑁 No of user clusters, No of product clusters

Table 1: Table of symbols and their descriptions.

• Extensive Experiments: We evaluate NED on multiple
synthetic and publicly available real-world datasets, as well
as a private, large-scale sparse dataset with 500𝐾 users, 2500
products and > 5𝑀 interactions from Snapchat, showing
≈ 14% accuracy improvement against state-of-the-art co-
cluster approaches and ≈ 20% average precision improve-
ment in explanation quality.

Our implementation is available at link1.

2 PROBLEM FORMULATION

Table 1 contains the symbols used throughout the paper. Before we
conceptualize the niche detection problem that our work tackles, we
define certain terms necessary to set up the problem and formally
define the problem statement.

2.1 Problem Context

We assume input data that consists of:
• A set of users and products (interchangeably, contents) rep-
resented by U = {𝑈1, . . . ,𝑈𝐼 } and P = {𝑃1, . . . , 𝑃 𝐽 } respec-
tively. The relationship between entities consists of: user-
product interactions containing tuple of the form (𝑈𝑖 , 𝑃 𝑗 , 𝑥𝑖 𝑗 ),
where 𝑈𝑖 ∈ U and 𝑃𝑖 ∈ P and 𝑥𝑖 𝑗 ∈ {0, 1}, and arranged
in the form of binary matrix X ∈ R𝐼×𝐽 , and zero entries
indicate absent interactions.

• A set of user features, arranged in a binary matrix U𝑓 ∈
R𝐼×𝐹1 , where 𝐹1 represents total number of user features,
and zero entries indicate absent features.

• A set of product (or content) features stored in a binary
matrix P𝑓 ∈ R𝐽 ×𝐹2 , where 𝐹2 represents total number of
product features, and zero entries indicate absent features.

The eventual goal in solving the niche detection problem is the
capacity to discover co-clusters with user and product attribute-
oriented explanations. The problem can be decomposed into two
subgoals: first, identifying quality co-clusters, and second, explain-
ing the co-clusters via careful node feature selection.

2.2 Problem Statement

Next, we introduce a few basic definitions necessary to define our
novel niche detection problem.

Definition 1 (Co-cluster). Formally, given a 𝐼 × 𝐽 data matrix
X, a co-clustering can be defined by two maps 𝜌 and 𝛾 , which groups
users (or rows) and products (or columns) of X into𝑀 and 𝑁 disjoint
or hard clusters respectively. Specifically,

𝜌 : {𝑈1,𝑈2, ...,𝑈𝐼 } → {𝑈1,𝑈2, ...,𝑈𝑀 } (1)

𝛾 : {𝑃1, 𝑃2, ..., 𝑃 𝐽 } → {𝑃1, 𝑃2, ..., 𝑃𝑁 } (2)

1http://www.cs.ucr.edu/~egujr001/ucr/madlab/src/NED.zip
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where 𝜌 (𝑈 ) = 𝑈 denotes that user𝑈 is in user cluster𝑈 , and𝛾 (𝑃) = 𝑃
denotes that product 𝑃 is in product cluster 𝑃 . A co-cluster is an
interaction block defined by {𝑈𝑚, 𝑃𝑛} for some𝑚 ≤ 𝑀,𝑛 ≤ 𝑁 .

Definition 2 (Co-cluster Explanation). A co-cluster expla-
nation predicates the existence of binary feature matrices for users
and products, U𝑓 , and P𝑓 respectively. Let 𝑠𝑢𝑏 (U𝑓 ) and 𝑠𝑢𝑏 (P𝑓 ) re-
spectively denote some subset of the 𝐹1 user and 𝐹2 product features,
without loss of generality. An explanation for a co-cluster is indicated
by a suitable pair (𝑠𝑢𝑏 (U𝑓 ), 𝑠𝑢𝑏 (P𝑓 )), which are associated with the
co-cluster.

Definition 3 (Niche). A niche is the pairing of a co-cluster with
a co-cluster explanation. Formally, a niche is indicated by

{𝑈𝑚, 𝑃𝑛, 𝑠𝑢𝑏 (U𝑓 ), 𝑠𝑢𝑏 (P𝑓 )} (3)

where 𝑈𝑚 is𝑚𝑡ℎ user cluster, 𝑃𝑛 is the 𝑛𝑡ℎ product cluster, and
𝑠𝑢𝑏 (U𝑓 ) and 𝑠𝑢𝑏 (P𝑓 ) are subsets of user and product features.

We now have all the necessary definitions to formally define our
problem. Hence, we pose the following:

Given (a) a set of usersU and products P with user-product
interactionsX, (b) user-feature relationshipsUf , and (c) product-
feature relationships Pf ;
Design a framework to identify one or more coherent niches
of the form in Equ. 3.

3 NED FOR NICHE DETECTION

Our proposed approach relies on two successive steps. First, the
co-clustering step that co-clusters the user-product interaction data
matrix and second, the explaining step, which focuses on learning
the set of features that suitably characterize high-quality co-clusters
discovered in the previous step. A two-step method is beneficial
for two reasons: first, the driving features of the generative process
may be missing in the observed data in lieu of strong correlates,
in which case we may not want to try and infer a misleading pro-
cess directly from these correlates; its sufficient in our case to try
to identify strong correlative, instead of non-causal relationships.
Second, with co-clustering independent of the features, we avoid
missed cluster scenarios where a joint generative process may not
identify a co-cluster simply because it is composed of a mix of
features that the process is not sufficiently capable of capturing.
By decoupling clustering and explanation, we prioritize recall on
observed interaction clusters, acknowledging that some may be
hard to adequately explain, but exist nonetheless. Although any
co-clustering algorithm can be used in solving the niche detection
problem, we propose a variant of NMTF guided by mutual informa-
tion as one suitable solution. In fact, through extensive experiments
(see Section 4.4), we show that our proposed method is not only
intuitive, but achieves state-of-the-art co-clustering performance
compared to previously proposed methods in literature.

3.1 Step 1: Co-Clustering

We frame the co-clustering problem (Defn. 1) in an NMTF-inspired
formulation: we seek a decomposition of the user-product matrix
X ∈ R𝐼×𝐽 into three low dimensional non-negative [36, 52] latent
factor matrices i.e.A ∈ R𝐼×𝑀+ is user-clustering matrix, B ∈ R𝐽 ×𝑁+ is

product-clustering matrix and S ∈ R𝑀×𝑁
+ provides the summary of

X due to co-clustering. The values𝑀 and 𝑁 represent the number
of user and product clusters, respectively (𝑀 << min(𝐼 , 𝐽 ) and
𝑁 << min(𝐼 , 𝐽 )). The optimization problem can be represented as:

L(X,A,B, S) = min
A,B,S

| |X − ASB𝑇 | |𝐹2
𝑠 .𝑡 . A ≥ 0, B ≥ 0, S ≥ 0

(4)

In this way, users and products are clustered simultaneously while
satisfying constraints, keeping a good low-rank approximation.

3.1.1 Factor Inference. Here, we derive an alternating optimization
algorithm that infer the latent factor matrices from the user-product
interaction X. The Equ. 4 can re-written as:

L =
1
2
𝑇𝑟 ((X − ASB𝑇 ) (X − ASB𝑇 )𝑇 )

=
1
2
𝑇𝑟 (XX𝑇 − 2XBS𝑇A𝑇 + ASB𝑇BS𝑇A𝑇 )

(5)

Next, as in the bilateral k-means algorithm [24], we derive iterative
update rules for A and B under the non-negativity constraints. The
update rule of A is given as:

A𝑖𝑚 =

{
1 𝑚 = argmax𝑖 (Â(𝑖, :)), Â(𝑖, :) = [XBS𝑇 ] (𝑖, :)
0 otherwise

(6)

There is only one element equal to 1 at𝑚𝑡ℎ column and the rest
are zeros in each 𝑖𝑡ℎ row of A. Similarly, B can be updated as:

B𝑗𝑛 =

{
1 𝑛 = argmax𝑗 (B̂( 𝑗, :)), B̂( 𝑗, :) = [X𝑇AS] ( 𝑗, :)
0 otherwise

(7)

As we impose constraints on user (A) and product (B) latent fac-
tors, the summary matrix S could be noisy since it is not optimized
with any given criterion. It could represent an unclear structure
(due to data noise, and high overlap among the categories repre-
sented by the clusters) where either there is no correlation between
clusters, or every cluster is associated with other clusters. In order
to mitigate the above issue, we compute the summary matrix S as
positive point-wise mutual information (PPMI) matrix, which can
extract clearer co-clusters and exploits its background knowledge
for further convergence of the algorithm. The PMI is a theoretical
measure of information widespread used to measure the association
between pairs of results that arise from discrete random variables.
In the literature [44], it is shown that this measure is highly co-
related to conditional probability and resembles human judgment.
Mathematically, the PMI between two random variable 𝑢 and 𝑣 is
given by:

𝑃𝑀𝐼 (𝑢, 𝑣) = log
( 𝑝 (𝑢, 𝑣)
𝑝 (𝑢)𝑝 (𝑣)

)
(8)

Thus, we compute S ∈ R𝑀×𝑁
+ as follows:

S = log
( A𝑇XB∑𝐽

𝑗=1 A
𝑇X

∑𝐼
𝑖=1 XB

)
𝑠 .𝑡 . S ≥ 0 (9)

So, each element of S𝑚,𝑛 represents the PMI between a user cluster
A𝑚 and a product cluster B𝑛 . The rows of the matrix A𝑇X are the
basis vectors of the row space of S (i.e., the user centroids) and B the
columns of the matrix XB are the basis vectors of the column space
of S (i.e., the product centroids). Each positive value of the matrix
has surely to be considered in the identification of co-cluster.



Why PMI?: The intuition behind computing S using PMI comes
from the observation that sometimes, in the co-clustering of user-
product data, a user cluster is associated with another product
cluster that does not exist. This leads to the idea of an update rule
based on co-occurrence between users and products for all cluster
pairs in the given data. PMI is an information-theoretic approach
that measures how often two clusters (A𝑚,B𝑛) occur as compared
with what we expect if they were independent. The numerator of
PMI informs us how often we observed the two clusters together
in user-product context consumption. The denominator informs us
how often we would anticipate both to co-cluster, assuming they
are independent clusters. Thus, the ratio provides us an estimation
of howmuch more the two clusters co-cluster than we anticipate by
chance. Our choice for PMI is encouraged by [58]. Using PMI, we
encourage users of similar interactions with products to have closer
representation in latent space. For example, when representing co-
clusters, we can easily think of positive relationship (e.g. “Female”
and “Nurse”) but find it much harder to relate negative ones (“Fe-
male” and “Carpenter”). Therefore, we focus on positive point-wise
mutual information. Next, Equ. (6) and (7) can be re-written as:

Â = XB log
( A𝑇XB∑𝐼

𝑖=1 A𝑇X
∑𝐼

𝑖=1 XB

)𝑇
; B̂ = X𝑇A log

( A𝑇XB∑𝐽
𝑗=1 A

𝑇X
∑𝐼

𝑖=1 XB

)
(10)

Now, we assign each user/product to a single cluster by finding the
cluster with maximum membership. This translates to finding the
maximum column index for each row.

3.2 Step 2: Co-Cluster Explanation

After discovering outstanding co-clusters, we next aim to identify
the user and product feature subsets that best explain the co-clusters.
The process involves two steps: auxiliary feature matrix creation to
infer the user preferences over product features to get insights about
implicit user similarities, and feature selection using point wise
mutual information to compute the association between features
and user/product cluster centroids. The quest for similarities plays
an important role in co-cluster analysis [59]. In quadripartite graphs
(see Figure 2), one can derive several semantics on similarity by
considering different paths in a graph. Upon deriving these, we
have all information to learn important co-cluster features: the final
suitability score for each feature is captured as a linear combination
of both steps. We briefly explain each step as follow:

3.2.1 Auxiliary Feature Matrix. We have the user and product fea-
ture vectors (U𝑓 ∈ R𝐼×𝐹1 and P𝑓 ∈ R𝐽 ×𝐹2 ) which are independent
and do not infer any user preferences for the features that appear
in products and vice-versa. This could lead to undermining the
user/product similarities for feature learning. To overcome this is-
sue, we compute the user’s proximity to a product feature through
a meta-path as an indication of the user’s possible “preference”
towards the product feature and vice versa. The meta-path [59]
is a powerful mechanism for a user to select an appropriate simi-
larity semantics to learn from a set of examples of similar objects.
Formally, a meta-path can be defined as:

Definition 4 (Meta-path). A meta-path is a sequence of re-
lations R between object types O, which defines a new composite
relation between its starting type and ending type. It is denoted in

U P PfUf

Direct path
Based on user-user similarity
Based on product-product similarity

Figure 2: Quadripartite graph of the users U ∈ R𝐼 , Product P ∈ R𝐽
and the user features U𝑓 ∈ R𝐼×𝐹1 and product features P𝑓 ∈ R𝐽 ×𝐹2 .
The resultant user auxiliary feature matrices is U𝑝𝑓

∈ R𝐼×𝐹2 .

the form of O1
R1−−→ O2

R2−−→ . . .
R𝑚−1−−−−−→ O𝑚 , which defines a compos-

ite relation between R1 ◦ R2 ◦ · · · ◦ R𝑚 between types O1 and O𝑚 ,
where ◦ denotes the composition operator on relation. For example, a
meta-path (Figure 2, purple path) user (male) → product (movie) →
feature (action)→ product (movie)→ feature (comedy) (denoted as
UPFPF) indicates user preferences based on content similarities.

The process of auxiliary feature matrix creation is adapted from
[31, 59]. In [31], movie preferences are learned by leveraging user
similarities defined through different types of meta paths or rela-
tions to successfully design a newmovie. Here, the auxiliary feature
matrix helps to leverage both explicit features and user/product
similarities via a graph-theoretic approach. For user auxiliary fea-
ture matrix as shown in Figure 2, the red path U𝑈𝑃𝐹𝑝𝑓

(i.e., starting
from a user and ending on a product feature via a product) finds
the preferences for the product features for each user based on its
interactions. The blue path U𝑈𝑃𝑈𝑃𝐹𝑝𝑓

finds user preferences for the
product features based on user-user similarity, and the purple path
U𝑈𝑃𝐹𝑃𝐹𝑝𝑓

finds user preferences based on product-product (content)
similarity.

For the final weighted matrix U𝑝𝑓 ∈ R𝐼×𝐹2 , which represents
user U preference over product features P𝑓 is a linear combination
of the weighted U𝑝𝑓 over the three predefined meta-path types:

U𝑝𝑓 = 𝛼U𝑈𝑃𝐹𝑝𝑓
+ 𝛽U𝑈𝑃𝑈𝑃𝐹𝑝𝑓

+ 𝛾U𝑈𝑃𝐹𝑃𝐹𝑝𝑓
(11)

This linear combination helps to smooth the information in case
of sparse direct user-product preferences. Similarly, we compute
weighted auxiliary matrix for product features as:

P𝑢𝑓
= 𝛼P𝑃𝑈 𝐹𝑢𝑓

+ 𝛽P𝑃𝑈𝑃𝑈 𝐹𝑢𝑓
+ 𝛾P𝑃𝑈 𝐹𝑈 𝐹𝑢𝑓

(12)

where 𝛼, 𝛽,𝛾 ∈ R+ are combination parameters satisfying criterion
𝛼 +𝛽 +𝛾 = 1. We set 𝛼 = 0.5, 𝛽 = 0.25 and 𝛾 = 0.25 in both cases. We
give higher importance to direct user/product preferences (𝛼) and
lower importance to 4-step path (𝛽,𝛾 ) because it could ’obscure’ the
individual preferences by depending on ’similar’ users/products.
Section 4.6 shows sensitivity analysis for these parameters.

3.2.2 Feature Selection. For feature selection, we propose a PMI-
based approach that leverages the association between user and
product cluster centroids.We compute information about how often
we observed the certain features for each user cluster using A and

U𝑓 as
(A𝑇U𝑓 )𝑚𝑓∑𝑀

𝑚=1
∑𝐹1

𝑓 =1
(A𝑇U𝑓 )𝑚𝑓

∈ R𝑀×𝐹1 . Next, we compute information

about their association while independently drawn as 𝑝 (U𝑓 ) =



Dataset #users #products

#features #clusters

(users, products) (users, products)

Syn-I 10𝐾 1𝐾 (22, 43) (14, 20)
Syn-II 50𝐾 5𝐾 (22, 55) (70, 35)
Syn-III 500𝐾 10𝐾 (22, 63) (140, 50)
Syn-IV 1𝑀 50𝐾 (22, 86) (280, 70)
Cora 3𝐾 1.5𝐾 − (7,−)

WebKB4 4𝐾 1𝐾 − (4,−)
MovieLens 6𝐾 4𝐾 (25, 23) (−, 20)
News20 19𝐾 61𝐾 − (20,−)
Caltech 2𝐾 300 − (3,−)
Snapchat 500𝐾 2.5𝐾 (22, 238) (−,−)

Table 2: Details for the datasets. “-” indicates unknown/unavailable

public information.∑𝐹1
𝑓 =1

𝑈𝑓∑𝑀
𝑚=1

∑𝐹1
𝑓 =1 (A𝑇U𝑓 )𝑚𝑓

∈ R1×𝐹1 and 𝑝 (A) =

∑𝑀
𝑚=1𝐴∑𝑀

𝑚=1
∑𝐹1

𝑓 =1
(A𝑇U𝑓 )𝑚𝑓

∈

R1×𝑀 . Finally, we compute PMI relation as:

U1
𝑃𝑀𝐼

= log
𝑝 (A𝑇 U𝑓 )

𝑝 (A)𝑇 𝑝 (U𝑓 )
=

A𝑇 U𝑓 ∗∑𝑀
𝑚=1

∑𝐹1
𝑓 =1

(A𝑇 U𝑓 )𝑚𝑓∑𝑀
𝑚=1 A

𝑇 ∗∑𝐹1
𝑓 =1

U𝑓

(13)

where U1
𝑃𝑀𝐼

∈ R𝑀×𝐹1 . Now, we compute PMI relation for user
auxiliary features matrix U𝑝𝑓 as:

U2
𝑃𝑀𝐼 = log

𝑝 (A𝑇U𝑝𝑓 )
𝑝 (A)𝑇 𝑝 (U𝑝𝑓 )

∈ R𝑀×𝐹2 (14)

Similarly, we compute both PMIs (P1
𝑃𝑀𝐼

∈ R𝑁×𝐹2 and P2
𝑃𝑀𝐼

∈
R𝑁×𝐹1 ) for product features also. Due to space limitations and
symmetry, we do not include derivations for them.

To select the most relevant user and product features for the
niche, we linearly combine the PMIs associated with co-clustering
(i.e. via summary matrix S), attribute matrices (via. Equ. 13 ), and
auxiliary matrices (via. Equ. 14) as following:

For users: e𝑢 = U1
𝑃𝑀𝐼 + S ∗ P2𝑃𝑀𝐼 ∈ R

𝑀×𝐹1 (15)

For products: e𝑝 = P1𝑃𝑀𝐼 + S𝑇 ∗ U2
𝑃𝑀𝐼 ∈ R

𝑁×𝐹2 (16)
Finally, we choose the top 𝑁 highest values for each cluster (or
each row) from e𝑢 (Equ. 15) and e𝑝 (Equ. 16) to explain the niche.

4 EMPIRICAL EVALUATION

In this section, we aim to answer the following research questions:
• RQ1 Accuracy: Can NED outperform state-of-the-art alter-
natives at effectively capturing co-clusters?

• RQ2 Explainability: Can NED help learn meaningful ex-
planations of co-clusters, and thus better niches?

• RQ3 Scalability How efficient and scalable is NED with
respect to the size of the input graphs?

We discuss these after detailing our experimental setup.

4.1 Datasets and Experiment Setup

The details of the synthetic and the real data used for experiments
are given in Table 2.

4.1.1 Synthetic Data. In order to fully control and evaluate the
niches in our experiments, we generate synthetic data i.e. user-
product engagement graph X ∈ R𝐼×𝐽 , user attributes U𝑓 ∈ R𝐼×𝐹1
(e.g. age, gender, country, app engagement etc.) and product at-
tributes P𝑓 ∈ R𝐽 ×𝐹2 (e.g. name, publisher name, country, cate-
gory,subcategory etc.) as discussed in Supplementary Material.

4.1.2 Real Data. We employ several real-world public datasets
from different domains: Cora is publications dataset,WebKB4 con-
sists of classified web page information, MovieLens has data has
6000 users and 4000 movie rating information, News20 is a collec-
tion of approximately 20,000 newsgroup documents, Caltech [32] is
an image dataset. We also use private Snapchat dataset containing
full-duration views between users and public feed contents from
the Snapchat platform; we assume full views to indicate persisted
interest in the consumed content, as in [27, 34].

4.2 Baseline Methods

The two major components of NED are in (a) the discovering of
coherent co-clusters, and (b) their concise explanation via nodal
attributes. Thus, we conduct experiments with two categories of
baseline to evaluate each contribution separately.

4.2.1 Co-clustering. : To demonstrate the superior performance of
the proposed algorithm for data representation, we compare NED
with closely related methods, which are listed as follows:
• NEO-CC [61]: A non-exhaustive overlapping co-clusteringmethod
based on the minimum sum-squared residue objective.

• DeepCC [63]: A deep autoencoder based co-clustering method
which employs a variant of Gaussian Mixture Model (GMM) to
infer cluster assignments.

• CoClusInfo [50]: An information-theoretic approach which
uses mutual information to define its objective function.

• FNMTF [10]: A fast, NMTFmethod based on projected gradients,
coordinate descent, and alternating least squares optimization.

• WC-NMTF [52]: A word co-occurrence NMTF method that
leverages mutual information for co-clustering the word and
documents.

• SNCC [37]: a sparse neighbor constrained co-clustering with
dual regularizers for learning category consistency.
Note that in [52], WC-NMTF method performed better than

original NMF [64], orthogonal NMF (ONMF) [65], projective NMF
(PNMF) [66], graph regularized NMF (GNMF) [4], NMTF [36], or-
thogonal NMTF (ONMTF) [13] and graph regularized NMTF (GN-
MTF) [54]. Similarly, in [37], paper evaluated performance of SNCC
against K-means [35], NMF [64], SNMF [14], graph regularized NMF
(GNMF) [4], dual regularization NMTF (DNMTF) [54], dual local
learning co-clustering (DLLC) [60] and structured optimal bipartite
graph (SOBG). Therefore, to avoid the repetitive comparison, we
chose to compare our proposed method’s performance with SNCC

andWC-NMTF.

4.2.2 Explainability. Although we could not find any explicit co-
clustering explainability baselines, we adapted the recently pro-
posed LightGBM [29] for our explainability baseline. It is a boost-
ing decision tree-based method that employs feature bundling to
deal with a large number of features. To use it as our baseline, we fed
co-clustering outcomes from the above-discussed method as labels
for the user and product clusters along with user/product features
data matrices to discern feature importance per co-cluster. We also
compared our method with recently proposed method BMGUFS

[2] which is rigorous approximation algorithms for block model
guided unsupervised feature selection and helps in finding high-
quality features for cluster explanation.



Dataset Cluster Metric NEO-CC DeepCC CoClusInfo FNMTF WC-NMTF SNCC NED

I
User NMI 0.672 ± 0.052 0.771 ± 0.031 0.879 ± 0.021 0.601 ± 0.023 0.824 ± 0.022 0.831 ± 0.016 0.948 ± 0.017

Accuracy 0.532 ± 0.029 0.597 ± 0.034 0.781 ± 0.049 0.703 ± 0.021 0.695 ± 0.019 0.780 ± 0.021 0.865 ± 0.045

Product NMI 0.772 ± 0.075 0.736 ± 0.002 0.886 ± 0.001 0.851 ± 0.043 0.801 ± 0.032 0.854 ± 0.161 0.949 ± 0.096

Accuracy 0.776 ± 0.105 0.651 ± 0.005 0.789 ± 0.057 0.719 ± 0.001 0.683 ± 0.045 0.741 ± 0.122 0.865 ± 0.032

II
User NMI 0.793 ± 0.062 0.769 ± 0.047 0.901 ± 0.008 0.883 ± 0.041 0.746 ± 0.052 0.902 ± 0.021 0.960 ± 0.011

Accuracy 0.682 ± 0.062 0.568 ± 0.075 0.794 ± 0.052 0.703 ± 0.028 0.683 ± 0.119 0.761 ± 0.061 0.867 ± 0.038

Product NMI 0.673 ± 0.024 0.743 ± 0.064 0.924 ± 0.064 0.904 ± 0.058 0.839 ± 0.072 0.911 ± 0.141 0.947 ± 0.014

Accuracy 0.540 ± 0.086 0.694 ± 0.109 0.799 ± 0.034 0.834 ± 0.058 0.788 ± 0.001 0.801 ± 0.014 0.853 ± 0.042

III
User NMI

[-] [-]

0.720 ± 0.011 0.913 ± 0.046 0.763 ± 0.023 0.921 ± 0.046 0.973 ± 0.006

Accuracy 0.694 ± 0.017 0.523 ± 0.034 0.492 ± 0.002 0.632 ± 0.021 0.882 ± 0.023

Product NMI 0.840 ± 0.001 0.842 ± 0.074 0.763 ± 0.028 0.856 ± 0.121 0.933 ± 0.019

Accuracy 0.640 ± 0.068 0.653 ± 0.104 0.535 ± 0.112 0.716 ± 0.214 0.799 ± 0.023

IV
User NMI

[-] [-]

0.879 ± 0.021 0.879 ± 0.021
[-]

0.881 ± 0.012 0.959 ± 0.017

Accuracy 0.534 ± 0.011 0.495 ± 0.133 0.563 ± 0.112 0.587 ± 0.072

Product NMI 0.947 ± 0.001 0.893 ± 0.129 0.891 ± 0.012 0.971 ± 0.007

Accuracy 0.832 ± 0.064 0.793 ± 0.101 0.801 ± 0.102 0.902 ± 0.032

Table 3: Experimental results for NMI and Accuracy for synthetic data. Boldface indicates the best results.
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Figure 3: The co-clustering result of NED on synthetic data. Left to right: (a) original synthetic data with 7 users and 7 product clusters, (b)

shuffled synthetic data, (c) the second-best performing baseline (CoClusInfo) result (91% accurate), and (d) NED’s result (100% accurate).

4.3 Evaluation Measures

4.3.1 Co-clustering. We evaluate NED and the baselines for co-
clustering using three criteria: Normalized Mutual Information
(NMI) [5], Accuracy [5] and CPU time (sec).

4.3.2 Explainability. We evaluate NED and the baselines for ex-
plainability using three criteria namelyAverage Precision, Stabil-
ity score [46] and our proposed Compression Score. The MDL
based compression score is given by:

𝑆𝑐𝑜𝑟𝑒 = log∗ 𝑟𝑚 + log∗ 𝑐𝑛 + log∗ 𝑢𝑓𝑚 + log∗ 𝑝𝑓𝑛 + 𝐸 (𝐵𝑚𝑛 )

− 𝑐𝑛 log2
𝑐𝑛

𝐽
+ log2 (𝑟𝑚𝑐𝑛 + 1) −𝑢𝑓𝑚 log2

𝑢𝑓𝑚

𝐹1
+ 𝐸 (𝐵𝑚𝑚 )

+ log2 (𝑟𝑚𝑢𝑓𝑚 + 1) − 𝑝𝑓𝑛 log2
𝑝𝑓𝑛

𝐹2
+ log2 (𝑐𝑛𝑝𝑓𝑛 + 1) + 𝐸 (𝐵𝑛𝑛 )

(17)

where log∗ is the universal code length for integers [49], 𝑟𝑚 is
𝑚𝑡ℎ the row cluster encoding bits, 𝑐𝑛 is 𝑛𝑡ℎ the column cluster
encoding bits, 𝑢𝑓𝑚 is the𝑚𝑡ℎ feature cluster encoding bits corre-
sponding to the𝑚𝑡ℎ row cluster, 𝑝 𝑓𝑛 is 𝑛𝑡ℎ feature cluster encoding
bits corresponding to the 𝑛𝑡ℎ column cluster. 𝐸 (𝐵𝑚𝑛), 𝐸 (𝐵𝑚𝑚) and
𝐸 (𝐵𝑛𝑛) are the number of bits required to encode block of user-
product, user-feature and product-feature, respectively. The lower
the value, the better is the compression.

4.4 Quantitative Analysis

In this section, we provide quantitative evaluation and analysis of
our method for co-clustering and explainability on synthetic and
real-world datasets. Recommendation is undoubtedly one key task
for businesses. However, explainable and thematic engagement
is useful for both individual content creators (influencers, etc.)
and companies (Snapchat, Netflix, etc.) who aim to attract certain
audiences with original content. The most concrete and evaluate-
able components are discovering and describing the co-clusters
and explanations found, upon which these creators can leverage
findings. Thus, our quantitative evaluation is focused around these
points, and we also show associated qualitative end-to-end findings
on real data.

4.4.1 Co-clustering Performance. To answer the first experimental
question, we report co-clustering performance of all methods in
Table 3 and 4. We cap the allowed run-time of all methods to 24
hours, indicating unfinished/non-converged results as “-”.

Synthetic Data: As we can see in Table 3, NED achieves the
best performance for all synthetic datasets. As expected, NED sig-
nificantly out-performs three related NMTF-based methods, SNCC,
FNMTF and WC-NMTF, due to its use of mutual information via
the summary matrix as described in Section 3. Moreover, NED out-
performs CoClusInfo, NEO-CC and the neural method DeepCC, in
both accuracy and NMI, surpassing them with substantial accuracy
improvements ( average ≈ 14%). We visualize the co-clustering abil-
ity of NED and second highest performing baseline (CoClusInfo)
on an additional small synthetic data (SmallSYN). The SmallSYN
data has 500 users, 500 features and 7 co-clusters, and is shown
in Figure 3(a). The shuffled data fed into CoClusInfo and NED is
shown in Figure 3(b). Subsequently, the users and products are
rearranged to show discovered co-clusters as shown in Figure 3(d),
according to which NED detects the co-clusters precisely (100%
accuracy). CoClusInfo’s results (achieving 91% accuracy) are shown
in Figure 3(c). Note that the inferred co-cluster sequences in Figure
3(c-d) are not the same as in Figure 3(a) – this is because the cluster
assignment for the same user/product clusters may be arbitrarily
permuted during inference.

Real Data: Table 4 presents NED ’s performance compared to
state-of-the-art techniques on real datasets, using the NMI, accuracy
and CPU Time (in seconds). For each dataset, we list the scores that
correspond to a specific cluster type. For all real datasets except
Movielens data, only user labels are available. For Movielens data,
product labels are inferred from movie genre types. NED is the only
method that shows consistently high performance on all different
kinds of datasets, indicating its flexibility. Due to space limitations,
here, we provide analysis of Movielens data below and analysis of
other real datasets are provided in Supplementary Material.

Movielens Data: We observe thatNED is able to detect 15 clusters
for movies. This is reasonable outcome for this data, as there are



Dataset Cluster Metric NEO-CC DeepCC CoClusInfo FNMTF WC-NMTF SNCC NED

Cora User
NMI 0.034 ± 0.004 0.003 ± 0.001 0.152 ± 0.006 0.152 ± 0.011 0.173 ± 0.002 0.112 ± 0.001 0.181 ± 0.023

Accuracy 0.206 ± 0.034 0.2943 ± 0.045 0.375 ± 0.032 0.373 ± 0.101 0.314 ± 0.133 0.213 ± 0.022 0.399 ± 0.034

Time (sec) 1488.8 ± 126.6 1481.4 ± 256.3 6.6 ± 1.23 4.5 ± 1.2 121.3 ± 12.5 4.1 ± 0.34 7.9 ± 0.7

WebKB4 User
NMI 0.136 ± 0.001 0.379 ± 0.084 0.383 ± 0.095 0.255 ± 0.054 0.241 ± 0.058 0.149 ± 0.003 0.489 ± 0.043

Accuracy 0.374 ± 0.075 0.568 ± 0.026 0.653 ± 0.082 0.549 ± 0.102 0.503 ± 0.121 0.461 ± 0.101 0.752 ± 0.029

Time (sec) 4089.7 ± 118.8 1719.9 ± 493.5 4.7 ± 1.6 3.7 ± 0.63 286.3 ± 2.2 3.2 ± 0.21 3.8 ± 0.6

MovieLens Product
NMI 0.356 ± 0.020 0.636 ± 0.102 0.742 ± 0.112 0.394 ± 0.021 0.689 ± 0.039 0.472 ± 0.102 0.783 ± 0.124

Accuracy 0.413 ± 0.020 0.550 ± 0.192 0.649 ± 0.102 0.382 ± 0.048 0.592 ± 0.124 0.564 ± 0.116 0.683 ± 0.017

Time (sec) 8402.3 ± 363.5 2067.78 ± 34.5 103.98 ± 3.6 34.78 ± 6.9 673.67 ± 5.7 29.43 ± 6.4 41.55 ± 3.6

News20 User
NMI

[-]
0.448 ± 0.018 0.499 ± 0.091 0.149 ± 0.031 0.392 ± 0.019 0.334 ± 0.016 0.541 ± 0.019

Accuracy 0.452 ± 0.075 0.433 ± 0.012 0.108 ± 0.093 0.329 ± 0.121 0.316 ± 0.021 0.477 ± 0.029

Time (sec) 4028.3 ± 42.6 114.4 ± 4.1 97.4 ± 12.3 1143.1 ± 41.6 92.6 ± 10.4 111.1 ± 16.3

Caltech User
NMI 0.324 ± 0.086 0.636 ± 0.087 0.753 ± 0.059 0.211 ± 0.101 0.593 ± 0.109 0.462 ± 0.011 0.756 ± 0.019

Accuracy 0.543 ± 0.001 0.778 ± 0.022 0.899 ± 0.012 0.531 ± 0.111 0.835 ± 0.291 0.791 ± 0.091 0.911 ± 0.102

Time (sec) 2649.6 ± 132.4 281.4 ± 13.3 2.4 ± 0.72 3.5 ± 0.41 103.5 ± 17.4 2.9 ± 0.21 3.9 ± 0.24
Table 4: Experimental results for NMI, Accuracy and CPU Time in seconds for real data. The boldface means the best results.

overlapping movie categories; for example, “Toy Story (1995)” can
be categorized in Animation as well as Comedy. FNMTF detected
only 5 − 6 clusters as shown in Figure 4. CoClusInfo, WC-NMTF,
SNCC and DeepCC achieved better performance, but still lower
than NED.

We also visualize the co-clustering results on the Movielens
dataset, to show a visual representation of improved co-clustering
performance. We rearrange the original data matrix (Figure 4(a))
according to the user and product cluster assignments to show the
co-clustering result.We observe that the co-clusters forNED (Figure
4(b)) are more salient compared to those for baselines FNMTF,
WC-NMTF and DeepCC (Figures 4(c-e)). Snapchat dataset is very
interesting and detailed analysis is provided in Section 4.7.

4.4.2 Explainability Evaluation. To answer the second experimen-
tal question, we first analyze the explanations derived from NED,
and compare the results with explanations from baseline methods.
Table 5 presents NED’s performance over LightGBM explanations
on 2 synthetic and 2 real datasets, using the stability score, average
precision, CPU time in sec. and our proposed compression score.

Setup: First, we obtain co-clusters using NED and other very
closely related two matrix tri-factorization based methods, i.e FN-
MTF and WC-NMTF. Note that baselines CoclusInfo, DeepCC and
NEO-CC provide only user and product cluster factor matrices but
do not provide any summary matrix S, which is required for our
computations (See Equ. 15 and 16). Next, co-clustering results are
fed into explainability components for both LightGBM, BMGUFS
and NED. For NED, first, we create auxiliary matrices for both
users and products (see Section 3.2.1), and then compute PMI using
co-clustering outcomes (see Section 3.2.2). We then select the top-5
user and product features per co-cluster to explain it.

Results: We observe that NED drastically outperforms the base-
lines for all the datasets. For synthetic data SYN-I, each user cluster
is created with combination of age and gender. Similarly, product
clusters are focused on gender dominated viewership. For example,
in our simulated data, women associate highly with “makeup &
cosmetic, weight loss, and pop music” and men associate highly
“card games, driving and racing games, and body building.” Our
results suggest that LightGBM and BMGUFS are not able to explain
co-clusters well with the correct attributes. This is likely, partially
because it trains a classifier using only co-cluster/cluster outcomes
and does not leverage implicit similarities between users and prod-
ucts. Conversely, NED successfully captures these similarities in
auxiliary matrices and is thus able to explain these relationships
for each co-cluster. Similarly, NED is able to provide more complex

explanations for SYN-II in which product clusters do not have any
specific gender based dominance.

ForMovielens,NED discovered an interesting co-cluster inwhich
salesmen and programmers strongly associated with adventure
movies, and in another co-cluster lawyers strongly associated with
drama and fantasy movies. Interestingly, all co-clustering baselines
with combination of BMGUFS for explanation underperformed in
our experiments, compared to the solution adopted by LightGBM
and NED. NED consistently compressed the discovered co-clusters
quite well, compared to LightGBM, suggesting that we can describe
the co-clusters more concisely with better-quality attribute/feature
explanations. Overall,NED outperforms state-of-the-art approaches
by at least ≈ 15% stability and ≈ 20% average precision improve-
ment. Also, NED achieves at least 5% compression bits and 20%
runtime reduction (see Table 5).

4.5 Scalability

Finally, to answer the third question, we experimentally study the
runtime of NED with respect to the input size on real graph. For
runtime measurements, we use a large private viewer-publisher
Snapchat data with 5million viewer and 7500 publisher. To generate
real graphs of growing size, we increasingly sample the Snapchat
user-product user engagementmatrix rows and reportNED runtime
averaged over 10 runs in Figure 5. We can observe that the run-time
of NED scales approximately linearly; notably, NED can handle
interaction matrices with many millions of interactions in mere
minutes. We show only linear scaling for Snapchat dataset because
(a) it is the largest dataset, and (b) the scaling trends are consistent
with other datasets.

4.6 Parameter Sensitivity Analysis

We evaluate the sensitivity of the interpolation parameters 𝛼, 𝛽
and 𝛾 in Equ. 11-12 which describe involvement of each meta-
path matrix. We learn stability and average precision score for
different combinations of {𝛼, 𝛽,𝛾} on synthetic data SYN-I. Here,
we kept 𝛽 = 𝛾 to give equal importance to 4-step meta path. Figure
6(left) shows that NED performs better when higher importance
is given to direct paths i.e 𝛼 ≥ 0.5. Beyond 𝛼 = 0.5 , there is no
significant change in performance. Moreover, Figure 6 (right) shows
that average precision achieves optimal values around 𝛼 = 0.5,
suggesting that incorporating indirect interactions via meta-paths
beyond just direct paths does contribute to improved performance.
Hence, we choose 𝛼 = 0.5,𝛽 = 𝛾 = 0.25 in our experiments.



U
se

rs

Movies (20 clusters)

U
se

rs
 (2

4 
cl

us
te

rs
)

Movies (20 clusters)

U
se

rs
 (1

6 
cl

us
te

rs
)

Movies (6 clusters)

U
se

rs
 (7

 c
lu

st
er

s)

Movies (13 clusters)

U
se

rs
 (1

2 
cl

us
te

rs
)

Movies (11 clusters)

Figure 4: Visualized co-clustering result of NED on the Movielens data. From left to right: (a) Original data, (b) co-cluster detected by NED, (c)

FNMTF, (d) WC-NMTF, and (e) DeepCC. NED evidently produces the most coherent co-clustering structure.

Data Clu Score

FNMTF WC-NMTF NED

ster LightGBM BMGUFS NED LightGBM BMGUFS NED LightGBM BMGUFS NED

S-I

U a 0.306 ± 0.04 0.294 ± 0.01 0.445 ± 0.06 0.381 ± 0.06 0.264 ± 0.02 0.447 ± 0.07 0.501 ± 0.06 0.416 ± 0.08 0.596 ± 0.06

b 0.119 ± 0.08 0.115 ± 0.06 0.134 ± 0.01 0.112 ± 0.03 0.201 ± 0.09 0.289 ± 0.02 0.148 ± 0.01 0.296 ± 0.16 0.496±0.07
P a 0.288 ± 0.03 0.276 ± 0.04 0.301 ± 0.02 0.129 ± 0.04 0.131 ± 0.02 0.132 ± 0.01 0.116 ± 0.09 0.264 ± 0.12 0.306 ± 0.04

b 0.218 ± 0.01 0.201 ± 0.06 0.311 ± 0.02 0.109 ± 0.06 0.146 ± 0.141 0.231 ± 0.03 0.274 ± 0.01 0.336 ± 0.17 0.412 ± 0.02

B c 43.34 ± 5.2 264.43 ± 21.64 8.45 ± 4.2 58.01 ± 4.3 124.6 ± 6.4 10.23 ± 3.1 28.26 ± 2.6 119.6 ± 10.4 5.86 ± 1.9

d 518.55 ± 0.55 598.65 ± 0.84 499.69 ± 0.4 659.9 ± 0.16 652.6 ± 0.26 636.4 ± 0.07 340.26 ± 0.06 387.4 ± 0.04 307.5± 0.05

S-II

U a 0.241 ± 0.05 0.224 ± 0.07 0.356 ± 0.1 0.202 ± 0.02 0.200 ± 0.06 0.331 ± 0.02 0.485 ± 0.07 0.483 ± 0.02 0.8481± 0.02

b 0.105 ± 0.01 0.106 ± 0.03 0.321 ± 0.09 0.09 ± 0.01 0.121 ± 0.04 0.298 ± 0.04 0.185 ± 0.08 0.321 ± 0.02 0.403 ± 0.02

P a 0.637 ± 0.11 0.592 ± 0.09 0.812 ± 0.13 0.071 ± 0.01 0.062 ± 0.01 0.035 ± 0.01 0.585 ± 0.15 0.576 ± 0.14 0.836 ± 0.06

b 0.121 ± 0.06 0.122 ± 0.08 0.224 ± 0.01 0.101 ± 0.03 0.102 ± 0.04 0.101 ± 0.02 0.100 ± 0.04 0.101 ± 0.03 0.390± 0.05

B c 1123.69 ± 12.7 1202.1.7 ± 0.04 102.454 ± 11.9 1229.82 ± 32.8 1364.7 ± 10.4 116.42 ± 18.4 1178.24 ± 8.9 962.4 ± 10.4 64.1 ± 4.8

d 6294.58 ± 0.08 6746.24 ± 0.02 5928.72 ± 0.01 9761.52 ± 0.1 9842 ± 0.04 9285.6 ± 0.02 4590 ± 0.09 4656.8 ± 0.02 3920.18 ± 0.07

ML

U a 0.197 ± 0.01 0.210 ± 0.01 0.126 ± 0.06 0.136 ± 0.04 0.141 ± 0.02 0.1679 ± 0.05 0.129 ± 0.08 0.196 ± 0.02 0.215 ± 0.04

b 0.124 ± 0.02 0.132 ± 0.11 0.246 ± 0.05 0.136 ± 0.01 0.142 ± 0.06 0.389 ± 0.08 0.197 ± 0.01 0.271 ± 0.06 0.466 ± 0.11

P a 0.009 ± 0.07 0.101 ± 0.01 0.101 ± 0.02 0.129 ± 0.09 0.162 ± 0.03 0.196 ± 0.06 0.212 ± 0.02 0.108 ± 0.01 0.228 v 0.06

b 0.246 ± 0.12 0.294 ± 0.02 0.301 ± 0.02 0.312 ± 0.01 0.264 ± 0.01 0.358 ± 0.03 0.326 ± 0.09 0.113 ± 0.05 0.424 ± 0.03

B c 38.6 ± 7.4 124.6 ± 2.5 30.5 ± 1.4 35.1 ± 2.9 112.2 ± 3.6 28.4 ± 6.4 21.24 ± 1.4 98.7 ± 3.3 14.30 ± 2.9

d 749.29 ± 0.42 760.4 ± 0.01 730.95 ± 0.19 788.08 ± 0.12 796.6 ± 0.04 760.02 ± 0.18 696.17 ± 0.49 683.6 ± 0.01 671.7 ± 0.32

SC

U a 0.289 ± 0.04 0.122 ± 0.04 0.305 ± 0.02 0.292 ± 0.03 0.161 ± 0.01 0.321 ± 0.04 0.329 ± 0.04 0.231 ± 0.02 0.351± 0.08

b 0.374 ± 0.07 0.101 ± 0.04 0.518 ± 0.11 0.281 ± 0.03 0.009 ± 0.01 0.521 ± 0.04 0.277 ± 0.04 0.201 ± 0.01 0.527 ± 0.05

P a 0.298 ± 0.01 0.106 ± 0.07 0.344 ± 0.09 0.312 ± 0.01 0.112 ± 0.01 0.241 ± 0.09 0.311 ± 0.09 0.261 ± 0.09 0.351 ± 0.01

b 0.178 ± 0.03 0.113 ± 0.02 0.236 ± 0.01 0.201 ± 0.02 0.121 ± 0.04 0.241 ± 0.10 0.200 ± 0.12 0.102 ± 0.01 0.257 ± 0.03

B c 1498.4 ± 12.5 2642.6 ± 23.7 149.5 ± 38.8 1298.5 ± 34.9 4364.36 ± 12.4 246 ± 13.9 1256.37 ± 56.2 3641.78 ± 34.7 107.15 ±11.3
d 60457.47 ± 1.21 61362.2 ± 0.04 54538.27 ± 1.14 58694.03 ± 3.21 58961.7 ± 0.01 56022.87 ± 3.42 52889 ± 0.45 53316.8 ± 0.14 47765.7 ± 0.34

Table 5: Experimental results for explainability evaluation. The boldface means the best results. The ’a’ represents Stability, ’b’ represents Avg.

Precision, ’c’ represents CPU Time (sec) and ’d’ represents Compression (Kb). Here ’U’ = User, ’P’ = Product and ’B’ = Both.
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Figure 5: (a) Total running time (averaged over 10 runs) of NED

versus the total number of non-zeros for Snapchat data (b) Co-

clustering running time for synthetic data.
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Figure 6: Sensitivity of interpolation parameters for co-cluster ex-

planation; values of 𝛼 = 0.5 (interpolating direct path with indirect

metapath matrices) produce best explanation results.

4.7 NED at Work

We use NED on a private viewer-publisher interaction dataset from
Snapchat, consisting of 500𝐾 viewers, 2500 publishers, and 5million
viewer-publisher interactions (here, viewers correspond to users,
and publishers to products, for consistency with our prior discus-
sion). The dataset is naturally unlabeled, making NMI and accuracy

Beauty & Lifestyle Family & Hobbies Music

Cosmetics Parenting & child care Urban hip-hop
Women Fashion Home Improvement Electronic Dance Music
Women Lifestyle Shopping Pop Music

Spa beauty Gardening Concerts
Nail Art Decor Design Classical Opera

Table 6: Illustration of niches discovered by NED.

analysis infeasible; therefore, we resort to qualitative discussion.
In this dataset, each viewer is described by 22 associated features
(age, gender, country, etc.) and each publisher has 238 features (e.g.
publisher demographics, publishing category etc.). We ran NED
with the maximum number of user clusters𝑀 = 100 and product
clusters 𝑁 = 25. For explainability evaluation, we use top 𝑁 = 5
highest feature values computed with Equ. 15 and 16. NED finds
viewer-publisher co-clusters of various sizes in Snapchat data. Table
6 provide three major niches based on high PMI values from the
summary matrix S.

The viewers clusters labeled as ‘1’ in Figure 7 mostly belong to
groups of young women (age between 13 − 20) associated with
publisher who publish content regarding ‘Beauty & Lifestyles’ cat-
egory. We observe that viewers in this dense group have similar
content consumption. The viewers cluster ‘2’ contains viewers with
connections across many publishers clusters like ’Home & Family’
and ’Hobbies & Interests’. All of the viewers are between two age
groups 25− 34 and > 35. This niche does not have any gender dom-
inance in viewer cluster but we observe that most of the content
creators or publishers are men. Niche represented by ‘3’ is the most
prominent: this is a dense group of male viewers, > 70% of them



are from North America and all of them are between age group
21 − 24, highly associated with content related to ’World Music’,
published by group of male publishers between age group 25 − 34.
Most of the publishers are from Europe. Overall as shown in Table
5, NED outperforms state-of-the-art approaches by ≈ 6% stability
and ≈ 4% average precision improvement. Also, NED achieves at
least 10% compression bits and 25% run time reduction (See Table
5) for Snapchat dataset. All in all, by using NED, we are able to
understand and explain the user content consumption graph in a
completely unsupervised fashion.
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Figure 7:NED on Snapchat data finds clusters of viewers/publishers

with similar attributes coherence.

5 RELATEDWORK

Co-clustering: Most prior clustering literature has focused on
one-sided clustering algorithms like 𝑘-means and its parameter-
free variants [16, 33], spectral [23, 68], and probabilistic clustering
[48, 67]. Our problem deals with simultaneous clustering of rows
and columns, known as bi(dimensional)-, co-, or block clustering
[9, 43] that can be categorized into following three main categories:
information-theoretic, decomposition-based, and neural methods,
which we discuss below.

The paper [12] introduced a co-clustering that utilizes a lossy
coding scheme to co-cluster a two dimensional joint probability
distribution, and it requires the number of clusters as input. [18]
proposes a parameter-free and a fast information-theoretic agglom-
erative co-clustering method. [61] proposed a co-clustering method
that allow rows and column clusters to overlap with each other.
[8] developed a hierarchical structure for rows and columns with
a minimum number of leaf clusters to realize co-clustering. Most
recently, [50] proposed improvements to [12].

[21] proposed two regularization terms to use the geometric
structure data of data graph and feature graph separately when
using semi-NMTF decomposition. [10, 11, 30, 37] proposed a fast
approach to constrain factor matrices to be cluster indicator matri-
ces. [45, 55] proposed a co-clustering method from the perspective
of dynamical synchronization. Most recently, [52] proposed a word
co-occurrence NMTF method that leverages mutual information
for co-clustering words and documents.

The paper [62] used the deep auto-encoder to map data to a low-
dimensional space and then minimize the KL difference between
cluster assignments and an auxiliary distribution distribution. Most
recently, [63] proposed a deep co-clustering model, DeepCC, which
used a deep auto-encoder to generate low-dimensional representa-
tions for rows and columns and used GMM framework for cluster
assignment prediction.

ExplainableMachine Learning In the last decade, explainable
machine learning has gained considerable attention. Prior work
shows that the ability of intelligent systems to justify their choices

is important for their successful use; when users do not understand
the decisions of an intelligent system, they become cynical and
unwilling to use it, despite improved performance [20, 28]. Several
works aim to explain complex predictive models with simple rule-
based explanations; rule-based explanations [6, 15, 41, 42] and deep
learning based explanations [47] have been a popular approach
to explain black-box models. However, these methods are often
tailored to the specifics of the model which is being explained.

Recently, another line of work has focused on explaining predic-
tions of complex models in terms of the importance of features in
the classification. [57] proposed an ablation-style approach which
removes all possible subsets of features and evaluates changes in
predictions. However, such combinatorial approaches are computa-
tionally expensive. [40] improved the computations described in
[57] and proposed efficient method to interpret model prediction
using weights on features, representing their relative contribution
on the prediction using Shapley values, and effectively applying to
any downstream classification model. Tree-based ensemble meth-
ods [39] such as random forests [38] and gradient boosted trees
[1, 29] achieve state-of-the-art performance in many domains. They
have a successful history of use in machine learning, and new
high-performance implementations are an active area of research
[7, 29, 51]. Such models often outperform standard deep models
[56] on datasets where features are individually meaningful and do
not have strong temporal or spatial structures [7, 53]. Most recently,
[29] proposed LightGBM and [2] proposed BMGUFS to enhance
the performance of tree-based models and NMTF model.

6 CONCLUSION

In this work, we tackle the problem of discovering market niches
for strategic content creation to satisfy diverse audience groups. We
pose the niche detection problem as one which involves discovering
coherent co-clusters in user-product (content) interaction graph
data, as well as explaining the co-clusters using nodal attributes
on user and product nodes. To our knowledge, ours is the first
work which tackles such an explainable co-clustering problem. We
proposed NED, the first niche detection framework for finding and
explaining co-clusters in attributed interaction graphs.NED utilizes
principles from mutual information to (a) propose and solve a non-
negative matrix tri-factorization oriented objective to discover cohe-
sive co-clusters, and (b) select important user and product features
associated with these co-clusters using meta-path driven feature se-
lection. In doing so, we find that NED successfully discovers niches
in user-content consumption data, and demonstrates improvements
over both state-of-the-art co-clustering approaches (≈ 14% accu-
racy) as well as candidate explanation approaches (≈ 20% average
precision) on multiple simulated and real-world datasets. Finally,
we show thatNED provides an advantageous speed-quality tradeoff
over alternative approaches, and scales effortlessly and discovers
interesting insights on large-scale interaction data with over 60M
interactions, via a private dataset from Snapchat.
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