
ISOBAR Preconditioner for Effective and
High-throughput Lossless Data Compression
Eric R. Schendel 1,2,+, Ye Jin 1,2,+, Neil Shah 1,2, Jackie Chen 3, C.S. Chang 5, Seung-Hoe Ku 4,

Stephane Ethier 5, Scott Klasky 2, Robert Latham 6, Robert Ross 6, Nagiza F. Samatova 1,2,∗

1 North Carolina State University, NC 27695, USA
2 Oak Ridge National Laboratory, TN 37831, USA

3 Sandia National Laboratory, Livermore, CA 94551, USA
4 New York University, New York, NY 10012, USA

5 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
6 Argonne National Laboratory, Argonne, IL 60439, USA
∗ Corresponding author: samatova@csc.ncsu.edu

+ Authors contributed equally

Abstract—Efficient handling of large volumes of data is a
necessity for exascale scientific applications and database systems.
To address the growing imbalance between the amount of
available storage and the amount of data being produced by
high speed (FLOPS) processors on the system, data must be
compressed to reduce the total amount of data placed on the
file systems. General-purpose lossless compression frameworks,
such as zlib and bzlib2, are commonly used on datasets requiring
lossless compression. Quite often, however, many scientific data
sets compress poorly, referred to as hard-to-compress datasets,
due to the negative impact of highly entropic content represented
within the data. An important problem in better lossless data
compression is to identify the hard-to-compress information
and subsequently optimize the compression techniques at the
byte-level. To address this challenge, we introduce the In-Situ
Orthogonal Byte Aggregate Reduction Compression (ISOBAR-
compress) methodology as a preconditioner of lossless compres-
sion to identify and optimize the compression efficiency and
throughput of hard-to-compress datasets.

I. INTRODUCTION

In the last ten years of High Performance Computing (HPC),
we have seen an increasing imbalance between the FLOPS of
the machine and the file system bandwidth. This imbalance
necessitates the need to reduce the data before it is written to
the file system; but due to the increasing complexity of the data
from many simulations, standard compression techniques often
become limited in their usefulness. Lossless compression
techniques offer no more than 20% reduction on many single
and double-precision floating-point scientific datasets that we
have tested on. These datasets are considered hard-to-compress
due to the minute gains obtained from the use of such
compression processes to reduce the data size. Moreover, the
low throughput of data compression and decompression makes
these techniques hardly suitable for in-situ processing (real-
time processing of the data during simulation run), which
is required for applications, such as those with simulation
checkpoint and restart data.

To bridge this gap, we introduce a strategy that enables
fast, effective, and high-throughput reduction of single- and

double-precision floating-point scientific data. The intuition
behind this method arises from the use of preconditioners for
improving the convergence rate of iterative solvers in linear
algebra, such as Algebraic Multigrid (AMG) [13], Quasi-
Minimal Residual (QMR) [14], LDL solver [5], and others.
Other preconditioning processes such as matrix factorization
(e.g., QR factorization) are widely used by applications in-
cluding aeronautics and fluid dynamics. To the best of our
knowledge, such preconditioning techniques optimizing input
for solvers have not been used in the lossless data-compression
realm.

The preconditioner introduced in this paper is called
ISOBAR-compress. ISOBAR-compress allows fast analysis of
data and is capable of identifying characteristics in data that re-
sult in poor compression ratio and compression/decompression
throughput. Our preconditioner analyzes the compressibility
of data and creates the appropriate pipelines for compression
of various datasets. Specifically, it decides how to partition
data into compressible and incompressible segments, how to
linearize multi-dimensional data, and also which compres-
sor should be used to optimize compression performance in
terms of storage or speed (user-specified). ISOBAR-compress
essentially circumvents the additional complexities presented
by multi-dimensional data by performing roughly the same
for original data linearized in different means. Upon testing
ISOBAR-compress on 24 scientific datasets of 7 applications
summarized in Table I (see Appendix for more details),
we found that 19 of them were identified as ISOBAR-
compress improvable hard-to-compress datasets. On these
datasets, ISOBAR-compress provided both higher throughput
(varying from 100MB to 450MB per second) and improved
compression ratios than those obtained without its use; 2
datasets had about 40% increase in compression ratio (∆CR,
Eq. 3), 13 of 19 had at least a 20% increase in the same, and
the other 6 datasets experienced compression enhancements in
the range of [5%, 10%]. In addition, ISOBAR offered a multi-
fold increase in compression and decompression throughputs.

TABLE I
CHARACTERISTICS OF SIMULATION OUTPUT DATASETS FROM SEVEN APPLICATIONS

Applications Research Area Variable(s) Data Type Reference
GTS Fusion Plasma Core density, potential double [29]
XGC Fusion Plasma Edge igid, iphase double, integer [19]
S3D Combustion temperature, vmagnitude float [11]
FLASH Astrophysics velocity double [4]
MSG NAS Parallel Benchmark (NPB) and ASCI Purple bt, lu, sp, sppm, sweep3d double [7]
NUM Numeric Simulations brain, comet, control, plasma double [9], [26]
OBS Measurements of Satellite error, info, spitzer, temp double [8]

[See Table II for some examples of ISOBAR-compress per-
formance and Results section for details.]

TABLE II
ISOBAR-COMPRESS PERFORMANCE SUMMARY

Dataset ∆ CR (%)1 TPC
2 SpC

3 TPD
4 SpD

5

GTS 10.15 111.7 8.05 551.90 5.01
XGC 14.09 76.83 21.17 388.87 51.92
S3D 32.56 104.73 31.45 424.79 63.12
FLASH 17.52 455.83 35.89 1617.02 14.19
1 ∆ CR (%): Percentage improvement of compression ratio (see Equation

3) comparing to the best alternative
2 TPC: Compression throughput in MB (megabyte) per second
3 SpC: Speed-up of compression (see Equation 2)
4 TPD: Decompression throughput in MB per second
5 SpD: Speed-up of decompression (see Equation 2)

We aim to optimize the solver (i.e., compressor) portion of
the data reduction pipeline by enabling our preconditioner to
function with any type of general-purpose compressors. Thus,
a user can specify a preference in compressor to use with little
to no change to our preconditioning method. We commonly
use zlib and bzlib2 as solvers, but could just as easily
use fpzip, FPC, and various other tools (each may provide
a different tradeoff in terms of throughput and compression
ratio).

CR =
Original Data Size

Compressed Data Size
(1)

Sp =
Throughput of ISOBAR-compress

Throughput of Standard (De-)Compressor
(2)

∆CR = (
CRISOBAR

CRStandard
− 1)× 100% (3)

II. METHOD

To understand what makes datasets hard-to-compress, we
analyzed several double-precision floating-point datasets (64-
bit) at the bit-level for their probability distributions (see
Figure 1). When a bit position has a probability distribution
of 1.0, it means that there is an absolute guarantee that the bit
position value will be either 0 or 1 for all the values in the
entire dataset. On the other hand, a probability distribution of
0.5 means the bit value for a given bit position has an equal
probability of either being 0 or 1 for all the values. Based on
this observation and experimentation, xgc igid, gts zeon, and

flash gamc (see Figure 1) are considered hard-to-compress
datasets, whereas msg sppm is not. Often, the first two bytes
have high probabilities due to the representation of double-
precision values as exponent and mantissa segments. Exponent
values are often close together due to locality of data. Mantissa
bytes can, in some cases have high probability based on
degree of approximation and amount of precision needed, but
are typically not predictable. The assumption is that the 0.5
probability distribution bits made the dataset hard-to-compress
due to lack of predictability; this lack of predictability, or
presence of randomness can be considered as noise in the data.
In signal processing, filtering or denoising methods are widely
used to improve the compression efficiency (a compressor’s
applied performance on a dataset) of a signal by discarding
the noise [23]. Inspired by this idea, we worked with the
notion that by identifying and extracting “noisy” data and
only compressing the remaining “signal” data, we will obtain
a better compression efficiency and throughput for any given
general lossless compressor.

0.4$$
0.5$$
0.6$$
0.7$$
0.8$$
0.9$$
1.0$$

0$ 8$ 16$ 24$ 32$ 40$ 48$ 56$ 64$
0.4$$
0.5$$
0.6$$
0.7$$
0.8$$
0.9$$
1.0$$

0$ 8$ 16$ 24$ 32$ 40$ 48$ 56$ 64$

0.4$$
0.5$$
0.6$$
0.7$$
0.8$$
0.9$$
1.0$$

0$ 8$ 16$ 24$ 32$ 40$ 48$ 56$ 64$
0.4$$
0.5$$
0.6$$
0.7$$
0.8$$
0.9$$
1.0$$

0$ 8$ 16$ 24$ 32$ 40$ 48$ 56$ 64$

xgc_igid gts_zeon

msg_sppm flash_gamc

Fig. 1. Bit frequencies of 4 representative datasets; x-axis represents bit
position (1 to 64), y-axis represents the probability distribution ranging from
0.5 to 1.0 of the more common bit values at that position (0 or 1)

The following subsections explore, in further detail, the
central components that compose the In-Situ Orthogonal Byte
Aggregate Reduction Compression (ISOBAR-compress) pre-
conditioner. The preconditioner’s objective is to identify the
noise-like properties within a dataset that negatively impact
compression efficiency and reduce the burden on the compres-
sor from processing such noise. The preconditioner workflow
is illustrated in Figure 2. There are two main components that
make up ISOBAR-compress: (1) ISOBAR-analyzer, which is

responsible for identifying the “high complexity” data [24]
(noise) that makes a dataset hard-to-compress, and (2) the
ISOBAR-partitioner, which is responsible for segmenting out
the noise that is considered hard-to-compress from the signal-
like data, thus improving the compression efficiency [25].
The remaining components (EUPA-selector, general lossless
compressor, and merger) of ISOBAR-compress are important
for successfully implementing the workflow and are also
discussed in the next few subsections.

ISOBAR-
analyzer

Compressible
Chunk Bytes

Incompressible
Chunk Bytes

Chunk
Metadata

Merger

EUPA
Metadata

Chunk
Subarray

General
Lossless

Compressor

ISOBAR-
partitioner

Training
Sample
Buffer

ISOBAR-compress Output

Linear Array of
Input Elements

EUPA-
selector

Fig. 2. ISOBAR-compress preconditioner workflow

A. ISOBAR-analyzer

The ISOBAR-analyzer is primarily responsible for analyz-
ing an input dataset consisting of elements of the same type
for clusters of bytes that negatively influence compressibility
throughout the dataset. This is accomplished by first determin-
ing if the input array of elements is a candidate for lossless
compression improvement at the byte-level. After completing
the improvement identification phase, the ISOBAR-analyzer
will promote appropriate decisions to other processes in the
ISOBAR-compress workflow (see Figure 2).

There are two main reasons that the ISOBAR-analyzer
operates at a byte-level: granularity support of general lossless
compressors, better entropic complexity [27] identification and
computational performance. Firstly, all the general lossless
compressors (such as zlib and bzlib2) operate at the
byte-level when doing entropy encoding [1], [2], [31], [6].
Thus, it is important for the ISOBAR-compress workflow to
process input data in a manner that promotes pipelining of
bytes to a compressor. Secondly, ISOBAR-analyzer can make
more accurate and quicker identification decisions in regards
to compressibility at the byte-level due to the greater variance
of entropy [18] as compared to analysis strictly at the bit-level.

When ISOBAR-analyzer receives a dataset of N elements,
it starts analyzing each element as an aggregate of ω bytes,
where each byte value is in the [0, 255] range. In order to store
all N elements of an input dataset, N ·ω bytes are required, for

example, each double-precision floating point number needs
ω = 8 bytes to store it, storing N = 1024 of them will
take 8192 bytes on the disk. The values of all required bytes,
Bytei,j , where 1 ≤ i ≤ N and 1 ≤ j ≤ ω, are represented by
the right matrix in Figure 3. Conceptually, the layout for the
set of elements can be illustrated as a matrix of bytes, where
each row represents an element of ω bytes and each column
represents an orthogonal placement of N bytes (one from each
element), called a byte-column.

€

Element1
Element2

ElementN −1
ElementN

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

⇔

Byte1,1 Byte1,2 Byte1,ω
Byte2,1 Byte2,2 Byte2,ω

ByteN −1,1 ByteN −1,2 ByteN −1,ω
ByteN ,1 ByteN , 2 ByteN , ω

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Fig. 3. Element and byte-level representation of an input array

ISOBAR-analyzer will begin its identification phase after
receiving an input dataset. The identification phase starts
by processing each byte-column separately looking for hard-
to-compress properties (illustrated in Figure 4). In order to
process all the byte-columns, ω byte-value frequency counters
are required. A frequency counter is necessary for generating
a frequency distribution of the possible 256 values for a given
byte-column. The frequency distribution helps determine the
possible reduction of byte sets that negatively influence overall
compressibility. If the distribution for each N byte value
within a byte-column is less than or equal to N/256, then that
column-based data set will be considered incompressible for
entropy encoding. Byte-columns with incompressible proper-
ties negatively affect the compressibility of the original input
dataset at the byte-level [27]. Thus, eliminating the incom-
pressible set of bytes represented by a column will improve
potential compressibility of the remaining byte-columns as a
whole.

After the ISOBAR-analyzer calculates the byte value fre-
quency distribution for each byte-column, the process then
selects the columns of bytes for reduction, identifiable as an
incompressible byte set. The byte-column selection is based on
a frequency distribution tolerance level that is a configurable
property of the ISOBAR-analyzer process. If all byte values
[0, 255] in a byte-column frequency distribution are below
the tolerance level, then that byte-column will be selected as
incompressible. For the sake of utilizing ISOBAR-compress
as a general solution, the frequency distribution tolerance
level is defined as τ · N/256 for N elements, where τ is
a value between 1 (always incompressible) and 256 (always
compressible). We fixed τ = 1.42 based on our experiments
and the reason is because when τ varies in the range of
[1.4, 1.5], the compression ratio’s improvement keeps stable
for each tested dataset.

€

Byte1,1 Byte1,2 Byte1,3 Byte1,ω −1 Byte1,ω
Byte2,1 Byte2,2 Byte2,3 Byte2,ω −1 Byte2,ω

ByteN −1,1 ByteN −1,2 ByteN −1,3 ByteN −1,ω −1 ByteN −1,ω
ByteN ,1 ByteN ,2 ByteN ,3 ByteN ,ω −1 ByteN ,ω

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

Byte-Column Indices	

Compressible Byte-Column or Not	

1 2 3 … ω-1 ω

Yes No No … Yes No

1 0 0 … 1 0

ISOBAR-analyzer Output Array	

€

Fig. 4. Byte-column reduction selection example

B. ISOBAR-partitioner

Once the ISOBAR-analyzer identifies all compressible byte-
columns for reduction, the next step is to determine whether
the input of elements qualifies as a candidate for lossless
compression improvements. These improvements are readily
available through the ISOBAR-compress workflow’s remain-
ing processes. Identification types for compressibility im-
provement for the entire dataset fall under two categories:
improvable, or undetermined. This determination is handled
by the ISOBAR-partitioner process. If none or all of the
columns are selected for reduction, then the input dataset
is considered undetermined, where the entire dataset is then
passed to the compressor process. If the dataset is identified as
improvable, then the ISOBAR-analysis selected byte-columns
are compressed, while the remaining byte-columns are not.
Algorithm 1 provides the operational data flow combining the
ISOBAR-analysis and ISOBAR-partitioner processes.

Based on the output array of ISOBAR-analyzer, the orig-
inal dataset is partitioned into two segments: the improvable
(compressible) byte-columns, and the hard-to-compress (in-
compressible) byte-columns (see Figure 5). Following the in-
formation passed from the End User’s Preference Adaptive Se-
lector (EUPA-selector, see Section C, designed to heuristically
choose the linearization strategy and lossless compression
technique), the compressible columns will be realigned with
the chosen linearization strategy. For example, if we encounter
a dataset of 64-bit double-precision floating-point numbers,
the EUPA-selector will decide to use zlib as the standard
compression method (the corresponding row-linearization and
metadata provided by the ISOBAR-analyzer is 10000010). The
ISOBAR-partitioner will then partition and row-wise linearize
the 1st and 7th columns and identify them as the input of
the zlib standard compression process. In doing so, we only
pass the compression algorithm 2 bytes rather than all 8 bytes
of the double-precision number as one row in the matrix. This
guarantees an increase in compression throughput.

Algorithm 1: ISOBAR-compress
Input:
X—Set of input elements to be compressed
E—End user’s preference: throughput or ratio
Output:
X ′—Compressed array
Data:
S—ISOBAR-analyzer output array
C—Compressible bytes of input elements
C ′—Compressed compressible bytes of input elements
I—Incompressible bytes of input elements
M—Metadata

1 S← ISOBAR-analyzer(X)
2 if S = {0, 0, . . . , 0} or S = {1, 1, . . . , 1} then
3 X ′ ← compressor(X , E)

4 else
5 {C, I, M} ← ISOBAR-partitioner(S, X)
6 C ′ ← compressor(C, E)
7 X ′ ← {C ′, I, M}
8 return X ′

1	
 0	
 0	
 0	
 …	
 1	
 0	

ISOBAR-analyzer Output	

Partition	

€

Byte1, i1 Byte1, ik
Byte2, i1 Byte2, ik

ByteN , i1 ByteN , ik

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

Compressible	
 Incompressible	

€

Byte1, ik+1
Byte1, ik+2

 Byte1, iω
Byte2, ik+1

Byte2, ik+2
 Byte2, iω

ByteN , ik+1

ByteN , ik+2
 ByteN , iω

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

€

⊕

€

Byte1,1 Byte1,2 Byte1,3 Byte1,ω −1 Byte1,ω
Byte2,1 Byte2,2 Byte2,3 Byte2,ω −1 Byte2,ω

ByteN −1,1 ByteN −1,2 ByteN −1,3 ByteN −1,ω −1 ByteN −1,ω
ByteN ,1 ByteN ,2 ByteN ,3 ByteN ,ω −1 ByteN ,ω

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

Fig. 5. Example of ISOBAR-partitioner operation

C. EUPA-selector

Since ISOBAR-compress is designed as a preconditioner
to improve performance of all solvers (lossless compression
techniques), the question that arose with this intuition was,
“Which type of performance is the most desired by the end-
user?” While some users may only want to save disk space and
hence desire the highest compression ratio rather than com-
pression throughput, most others, including scientists running
peta-scale simulation codes (XGC, GTS, etc.), would desire
a technique that provides the highest compression throughput
with reasonably acceptable (but perhaps not the best) com-
pression ratio. To preserve end-user flexibility in regards to

these choices, we designed the End User’s Preference Adaptive
Selector (EUPA-selector).

The EUPA-selector is a deterministic process that selects
the most suitable lossless compression framework for applying
to all the compressible bytes selected by ISOBAR-analysis
during the compression process of the workflow. The selector
makes a decision based on the evaluation of an input training
sample acquired from the input dataset, end-user criterion, and
lossless compressor evaluations.

For the purpose of this paper, the ISOBAR-compress work-
flow will be utilized as a black box solution where the
most commonly known compression algorithms (zlib and
bzlib2) are applied by the EUPA-selector. The selector is
designed to make a decision on which standard compression
method and byte-level linearization will provide the best per-
formance for the end-user’s preference. For example, although
the EUPA-selector inherently chooses the technique that pro-
vides the best compression ratio, the user can instruct the
selector to choose a faster method as long as the compression
ratio is above a certain, specified threshold. The selector is
implemented by first testing each combination of the standard
compression method and linearization strategy on sample
sets of random elements from the input dataset. Based on
the results from the corresponding combinations, the EUPA-
selector will make a decision to use either bzlib2 or zlib
as the standard compression method and apply either row-
based or column-based linearization. Regardless of whether an
input dataset to ISOBAR-analysis is identified as improvable
or not, the EUPA-selector will choose the optimal standard
compression method (zlib or bzlib2) and linearization
strategy for end-users. Based on our experimentations, datasets
identified as improvable will have a better compression ratio
whether zlib or bzlib2 is used as the standard compression
method.

D. Input Array Chunking and Output Merging

Scientific information generated from extreme-scale simu-
lations can easily expand beyond terabytes of archival data,
which is impractical for a lossless compressor to handle at
a post-processing stage. Compressing an extreme-scale gener-
ated dataset as a single input array of elements is problematic
due to a single-pass timing cost along with system memory
limits. Therefore, it is practical for a lossless compressor
to segment an input array into chunks (see Figure 6) of
manageable data for pipelining to an in-situ process of a
workflow.

A minimum chunk size is required by the ISOBAR-
compress workflow in order for the ISOBAR-analysis process
to function optimally. The reason is because ISOBAR-analysis
requires statistical evaluation of all the bytes-columns within
an input chunk of elements. This is similar to as why general
compressors require minimum block sizes, such as 4 MB used
in RCFile [16], and 3 MB demonstrated in the paper [31]. The
appropriate dataset chunk size, C, for ISOBAR-compress to
efficiently operate is covered in the performance evaluation
section of this paper.

Element1	
 Element2	
 …	
 ElementN-1	
 ElementN	

Element1	
 Element2	
 …	
 ElementC-1	
 ElementC	

Array of Input Elements	

Element	
 Element	
 …	
 Element	

Element	
 …	
 ElementN-1	
 ElementN	

Chunk Array 1:	

Chunk Array i:	

Last Chunk Array :	

€

i −1() • C + 2

€

i −1() • C +1

€

i • C

€

C • N /C⎡ ⎤ −1() +1

€

N /C⎡ ⎤

Chunk	

Fig. 6. Chunking a dataset (array of input elements)

At the end of the ISOBAR-compress workflow, an output
array of bytes is generated by merging the overall metadata
created by EUPA-selector, each chunk’s metadata generated
by ISOBAR-partitioner, and the incompressible byte-columns
along with the compressed byte-columns of each chunk (see
Figure 7).

Merging Information	

MEUPA: Metadata generated by EUPA-selector for all chunk arrays	

MID: Metadata generated by ISOBAR-analyzer for each chunk array	

IID: Incompressible data for each chunk array	

CID: Compressed data for each chunk array	

MEUPA	
 MID	
 IID	
 CID	

Merge	

MEUPA	
 M1	
 I1	
 C1	
 M2	
 I2	
 C2	
 … M	
 I	
 C	

€

N /C⎡ ⎤

€

N /C⎡ ⎤

€

N /C⎡ ⎤

Fig. 7. ISOBAR-compress merged output

III. PERFORMANCE EVALUATION

To demonstrate that ISOBAR-compress has the ability to
not only identify hard-to-compress datasets, but also improve
the compression efficiency, we apply two major metrics in
our tests: Compression Ratio (CR, see Equation 1) and
Compression/Decompression Speed-up (Sp, see Equation 2).

All metrics where collected on the Lens Linux cluster at
Oak Ridge National Laboratory. The Lens cluster is primarily
for data analysis and high-end visualization. Each cluster
node consists of four quad-core 2.3 GHz AMD Opteron
processessors and 64 GB of memory. All the results for the
following experiments were done utilizing only a single core
of one processor.

A. Datasets

To calculate these metrics, we tested the ISOBAR-compress
preconditioner on 24 scientific datasets of different data types,
including single-precision and double-precision floating-point
values and 64-bit integers, from various scientific disciplines
including combustion, physics, astrophysics, and astronomy.

To briefly introduce those datasets, Table I is provided
giving the name of simulation codes generating the datasets (or
the capitalized prefix of their name), their data types, applica-
tions, variables and referencing materials. Detailed description
for each dataset is in Appendix. All tested datasets’ statistical
characteristics are portrayed in Table III. Most of the datasets
consist of unique values (see Equation 4). V is the original
vector, VUnique is the array composed of elements from V ,
with duplicates removed. The datasets also have high degrees
of random entropy (see Equation 6); H(V) is the Shannon
entropy [28] (see Equation 5) of the input vector, where pi
is the probability of a given element in the vector V , and
Random(|V |) is a randomly generated vector consisting of
all unique elements with the same size of the original V . The
randomness value reflects how close the Shannon entropy of
the scientific data is to that of a truly 100% random dataset
with the same number of double elements [8].

Unique V alue =
|VUnique|
|V |

× 100% (4)

H(V) = −
N∑
i=1

pilog2pi (5)

Randomness =
H(V)

H(Random(|V |))
× 100% (6)

B. Overall Performance of Identification and Improvement

Table IV and V show that 19 out of 24 (79%) datasets
were classified as hard-to-compress, 19 of the 19 (100%)
were identified by ISOBAR-compress as improvable, and
all datasets showed improvement of both compression ra-
tio and compression/decompression throughput (speed) with
ISOBAR-compress.

One such example is the flash velx dataset. While using
standard compression methods such as zlib and bzlib2
to reduce this data, we achieved compression ratios (CRs) of
1.113 with zlib and 1.084 with bzlib2. However, when
compressing the same data with ISOBAR-compress, the CRs
for zlib and bzlib2 were enhanced by 17.52% with 35.89
times compression speed-up and 20.7% with 126.27 times
compression speed-up, respectively.

C. Effect of ISOBAR-analyzer

Compression efficiency is sensitive to message length and
input chunk size for most lossless compression techniques that
adapt based on calculated statistics of the subject data [31]. We
did experiments on five datasets and conclude that the proper
chunk (or block) size is about 375, 000 elements (doubles),

TABLE IV
ISOBAR-ANALYZER’S PREDICTIONS

Dataset HTC†? HTC Bytes(%) Improvable?
gts chkp zeon Yes 75% Yes
gts chkp zion Yes 75% Yes
gts phi l Yes 75% Yes
gts phi nl Yes 75% Yes
xgc igid Yes 37.5% Yes
xgc iphase Yes 75% Yes
s3d temp Yes 25% Yes
s3d vmag Yes 50% Yes
flash gamc Yes 62.5% Yes
flash velx Yes 75% Yes
flash vely Yes 75% Yes
msg bt No 0% No
msg lu Yes 75% Yes
msg sp Yes 62.5% Yes
msg sppm No 0% No
msg sweep3d Yes 50% Yes
num brain Yes 75% Yes
num comet Yes 37.5% Yes
num control Yes 75% Yes
num plasma No 0% No
obs error No 0% No
obs info Yes 75% Yes
obs spitzer No 0% No
obs temp Yes 75% Yes
† Hard-to-compress dataset

which is about 3 MB (shown in Figure 8), which is consistent
with previous conclusions that 3 MB is statistically reason-
able [31], [16]. The compression ratios given by ISOBAR-
compress start being consistent with the chunking size at this
point. With the chunk size guaranteeing consistent compres-
sion ratio, the ISOBAR-analyzer identified 19 of 24 datasets
as “improvable hard-to-compress” datasets in terms of CR
and compression/decompression speed-up by the ISOBAR-
compress method. These results are shown in Table V.

By using ISOBAR-compress with bzlib2, comparing to
standard bzlib2, all 19 datasets experienced an improved
compression ratio and throughput. The improvement of com-
pression ratio (∆CR(%)) was in the range of [5.24%, 46.6%],
while the improvement in speed-up (Sp) was in the range of
[1.319, 16.607] times faster (see Equation 2).

Using ISOBAR-compress with zlib, comparing to stan-
dard zlib, all 19 datasets showed better compression ratios,
and all 19 had gain in throughput (speed). The ∆CR(%) was
in the range of [4.7%, 37.0%] and the Sp was in the range
of [1.533, 35.89].

D. Optimization with EUPA-selector

As shown in Table VI with the speed preference chosen
and Table VII with the CR preference chosen, combining
ISOBAR-compress with general-purpose lossless compression
such as zlib and bzlib2 will improve the compression
efficiency yielded by using these standard compressors as
standalone utilities. Since the EUPA-selector boasts superb
flexibility of use, despite inconsistencies in the relative per-

TABLE III
STATISTICAL INFORMATION ABOUT TEST DATASETS

Dataset Data Type Set Size Number of Unique Value Shannon Randomness
(MB) Elements (millions) (percent) Entropy (percent)

gts phi l double 42 5.5 99.9 12.05 99.9
gts phi nl double 42 5.5 99.9 12.05 99.9
gts chkp zeon double 18 2.4 99.9 14.68 99.9
gts chkp zion double 18 2.4 99.9 15.12 99.9
xgc igid 64-bit integer 146 19.2 22.6 13.81 100.0
xgc iphase 8 doubles 1170 153.4 7.7 12.32 76.4
s3d temp single 77 20.2 45.9 12.21 95.4
s3d vmag single 77 20.2 49.9 12.81 99.9
flash velx double 520 68.1 100 24.34 100
flash vely double 520 68.1 100 25.74 100
flash gamc double 520 68.1 100 11.26 100
msg bt double 254 33.3 92.9 23.67 94.7
msg lu double 185 24.2 99.2 24.47 99.7
msg sp double 276 36.2 98.9 25.03 99.7
msg sppm double 266 34.8 10.2 11.24 44.9
msg sweep3d double 119 15.7 89.8 23.41 97.9
num brain double 135 17.7 94.9 23.97 99.5
num comet double 102 13.4 88.9 22.04 93.1
num control double 152 19.9 98.5 24.14 99.6
num plasma double 33 4.4 0.3 13.65 61.9
obs error double 59 7.7 18.0 17.80 77.8
obs info double 18 2.3 23.9 18.07 85.3
obs spitzer double 189 24.7 5.7 17.36 70.7
obs temp double 38 4.9 100.0 22.25 100.0

TABLE V
PERFORMANCE COMPARISON

Dataset zlib bzlib2 TPA
3 ISOBAR-CR Preference ISOBAR-Sp Preference

CR1 TPC (MB/s)2 CR TPC (MB/s) (MB/s) CR TPC (MB/s) CR TPC (MB/s)
gts chkp zeon 1.040 14.10 1.022 3.55 500.40 1.182 24.35 1.140 104.99
gts chkp zion 1.044 13.87 1.027 3.57 501.60 1.187 24.60 1.150 111.66
gts phi l 1.041 14.20 1.020 3.55 501.83 1.186 14.92 1.160 66.36
gts phi nl 1.045 14.11 1.018 3.57 501.26 1.180 15.41 1.157 65.65
xgc igid 3.003 1.12 3.120 5.99 505.33 3.368 5.34 2.962 100.91
xgc iphase 1.362 6.71 1.377 3.63 501.79 1.589 4.21 1.571 76.83
s3d temp† 1.336 7.25 1.452 3.25 513.15 2.063 8.95 1.831 53.14
s3d vmag† 1.190 11.12 1.210 3.33 516.75 1.774 8.50 1.604 104.73
flash gamc 1.289 19.50 1.281 3.87 503.05 1.557 16.40 1.532 245.19
flash velx 1.113 12.70 1.084 3.61 501.34 1.319 17.30 1.308 455.83
flash vely 1.135 12.01 1.091 3.62 501.57 1.319 60.12 1.307 444.75
msg bt 1.131 13.54 1.102 3.79 495.98 NI* NI NI NI
msg lu 1.057 14.52 1.021 3.55 499.92 1.298 20.19 1.246 235.21
msg sp 1.112 17.52 1.075 3.66 502.61 1.330 5.16 1.304 106.65
msg sppm 7.436 9.14 6.932 1.35 495.02 NI NI NI NI
msg sweep3d 1.093 13.46 1.277 3.21 501.72 1.344 6.61 1.287 78.86
num brain 1.064 14.01 1.042 3.13 503.51 1.276 10.08 1.238 226.51
num comet 1.160 13.78 1.172 3.66 496.75 1.236 4.83 1.215 21.13
num control 1.057 14.78 1.029 3.11 501.90 1.143 12.52 1.126 65.10
num plasma 1.608 19.50 5.789 0.48 503.44 NI NI NI NI
obs error 1.448 8.79 1.338 3.58 502.51 NI NI NI NI
obs info 1.157 15.42 1.213 3.41 503.47 1.292 5.28 1.249 228.91
obs spitzer 1.228 10.42 1.721 4.14 503.25 NI NI NI NI
obs temp 1.035 14.70 1.024 3.03 502.95 1.142 22.89 1.125 96.62
† Single-precision floating-point dataset
* NI: Not Identified—the dataset is identified as non-improvable by ISOBAR-compress
1 CR: Compression Ratio (see Equation 1)
2 TPC (MB/s): Compression throughput in MB (megabyte) per second
3 TPA (MB/s): ISOBAR-analysis throughput in MB per second

1	
1.1	
1.2	
1.3	
1.4	
1.5	
1.6	

0	 3,000	 6,000	 9,000	 12,000	 15,000	 18,000	

Co
m
pr
es
si
on

	 R
a-

o	

Chunk	 Size	 (KB)	

flash_gamc	 flash_velx	 flash_vely	 gts_zeon	 gts_zion	

Fig. 8. Chunking size for settled compression ratios

TABLE VI
IMPROVEMENT OF ISOBAR-SP PREFERENCE

Dataset* LS1 ∆CR(%)2 Sp3

gts chkp zeon Row 9.62 7.447
gts chkp zion Row 10.15 8.050
gts phi l Row 11.43 4.673
gts phi nl Row 10.72 4.653
xgc iphase Column 15.35 11.450
flash gamc Row 18.85 12.576
flash velx Row 17.52 35.899
flash vely Row 15.15 37.032
msg lu Column 17.88 16.199
msg sp Column 17.267 6.087
msg sweep3d Column 17.75 5.859
num brain Row 16.35 16.168
num comet Row 4.74 1.533
num control Row 6.53 4.405
obs info Row 7.95 14.845
obs temp Row 8.70 6.573
1 LS: Linearization Strategy
2 ∆CR(%): Percentage improvement of compression ra-

tio (Eq. 3) compared to the alternative with the highest
compression throughput

3 Sp: Compression speed-up (Eq. 2)
* EUPA-selector selected zlib as the better lossless com-

pression technique for all datasets above

formances of bzlib2 and zlib, end-users will be able
to get the performance of a (relatively) speedy compression
routine with a satisfactory compression ratio. For example,
if an end user wishes to compress the msg lu dataset, pri-
oritizing the compression/decompression throughput (speed)
above a higher compression ratio will cause EUPA-selector to
choose zlib with byte-level column-linearization (the fastest
technique, while still offering a compression ratio superior
to standard compression). In the worst case scenario, if the
dataset to be compressed is not identified as improvable, the
EUPA-selector will offer the optimal choice of the standard
compression method and linearization scheme. To extend to
the user complete flexibility of use, explicit specification of
input parameters (fixing the compression method and the
linearization strategy) is also permitted by EUPA-selector.

E. Single-Precision Data Compression

Although scientific simulations often produce double-
precision floating-point data (8-byte elements), for archival and
community sharing purposes, the datasets often get converted

TABLE VII
IMPROVEMENT OF ISOBAR-CR PREFERENCE

Dataset* LS1 ∆CR(%)2 Sp3

gts chkp zeon Row 13.65 1.727
gts chkp zion Row 13.69 1.774
gts phi l Row 13.93 1.051
gts phi nl Row 12.92 1.092
xgc iphase Column 15.39 1.160
flash gamc Row 20.79 0.841
flash velx Row 18.51 1.362
flash vely Row 16.21 5.006
msg lu Column 22.80 1.390
msg sp Column 19.60 0.295
msg sweep3d Column 5.24 1.410
num brain Row 19.92 0.719
num comet Row 5.46 1.319
num control Row 8.13 0.847
obs info Row 6.512 1.548
obs temp Row 10.34 1.557
1 LS: Linearization Strategy
2 ∆CR(%): Percentage improvement of compression

ratio (Eq. 3) compared to the alternative with the best
compression ratio

3 Sp: Compression speed-up (Eq. 2)
* EUPA-selector selected bzlib2 as the better lossless

compression technique for all datasets above

to single-precision (4-byte elements) format similar to the
“s3d” datasets in our experiments. Moreover, in some research
activities, such as hurricane prediction in climate studies,
original raw datasets for analysis only consist of single-
precision floating-point values.

To support our claim that ISOBAR-compress can be used
for data other than double-precision floating-point values, we
tested our methodology on 2 single-precision data sets (see
Table VIII). Both data sets were identified as improvable by
ISOBAR-compress. As shown in Table VIII, both compression
ratio and compression/decompression throughput (speed) were
enhanced via ISOBAR-compress. For example, while using
ISOBAR-compress with CR (compression ratio) preference
compressing for the “s3d” temperature dataset, compared
to the compressor with better compression ratio, ∆CR =
42.08%, and compression speed-up (Sp = 2.758). If ISOBAR-
Sp is chosen, compared to the better compression throughput
compressor, for the same “s3d” dataset, ∆CR = 37.05% and
Sp = 7.329.

TABLE VIII
PERFORMANCE ON SINGLE-PRECISION DATASETS

Dataset* LS3 ∆CR (%) Sp

ISOBAR-CR1 s3d temp Column 42.08 2.758
s3d vmag Row 46.67 2.552

ISOBAR-Sp2 s3d temp Column 37.05 7.329
s3d vmag Row 34.79 9.418

1 Performance of ISOBAR-CR preference
2 Performance of ISOBAR-Sp preference
3 LS: Linearization Strategy selected by EUPA-selector
* EUPA-selector selected bzlib2 for ISOBAR-CR and zlib for ISOBAR-

Sp as the better lossless compression technique

0.00%	

5.00%	

10.00%	

15.00%	

20.00%	

25.00%	

30.00%	

Linear_1(Original)	 Linear_2(Hilbert)	 Linear_3(Random)	

D
el
ta
	 C
R	
(%

)	

Data	 Lineariza1on	

flash_gamc	 flash_velx	 flash_vely	 gts_zeon	 gts_zion	

Fig. 9. Compression ratio improvement (∆CR(%), Eq. 3) for multiple
datasets with different linearization schemes: original order, Hilbert-linearized
order, and random order

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

7.00	

8.00	

Linear_1(Original)	 Linear_2(Hilbert)	 Linear_3(Random)	

Co
m
pr
es
io
n	
Sp
ee
d-‐
up

	

Data	 Lineariza4on	

flash_gamc	 flash_velx	 flash_vely	 gts_zeon	 gts_zion	

Fig. 10. Compression speed-up (Sp) for multiple datasets with different
linearization schemes: original order, Hilbert-linearized order, and random
order

F. Consistent Improvement over the Entire Simulation

Typically, scientific simulations generate many intermediate
datasets to allow trend analysis and prediction. For example,
a single run of the GTS simulation [29] will generate spatial
data for approximately 300, 000 time steps. To show that both
the EUPA-selector and ISOBAR-analyzer perform consistently
well throughput an entire simulation, we tested our technique
on GTS simulation data.

Results of the experiments for linear and nonlinear potential
fluctuation values show that not only all choices for time
steps given by EUPA-selector are the same (using bzlib2
with row-linearization), but also that all time step datasets are
identified as improvable by ISOBAR-compress. For the linear
regime of potential fluctuation values, the average ∆CR was
14.4% with a standard deviation of 1.8% and the average Sp
was 5.952 with a standard deviation of 0.065; for the nonlinear
regime of potential fluctuation values, the average ∆CR was
13.4% with a standard deviation of 2.7% and the average Sp
was 3.749 with a standard deviation of 0.053.

G. Robustness with Different Data Linearization

Data is constantly linearized. When data is generated by
simulation codes, it is linearized in memory by the aplication.
For example, XGC fusion simulations have multiple means
of linearization over the number of variables; particles are
mapped onto a mesh and characterized by radial, poloidal,
and toroidal dimensions. On disk, data is linearized in various
ways, such as Hilbert Space-Filling curves (used in querying
multidimensional data) [21], to improve the efficiency of data
retrieval.

We argue that by applying ISOBAR-compress as a precon-
ditioner to the general-purpose lossless compression schemes,
the performance does not significantly vary based on means of
data linearization. As shown in Figure 9, improvement of com-
pression ratios stays almost constant for the data linearized in
a specific linearization similar to Hilbert Curve [21] datasets;
even in the worst case scenario (where data is totally random),
ISOBAR-compress still enhances the compression ratio by
approximately 10% as compared to standard compression.
Moreover, Figure 10 shows that the compression throughput
(speed) is also consistent with various data linearizations.

H. Faster Decompression Throughput

Besides compression ratio and compression through-
put (speed), ISOBAR-compress also improves the through-
put (speed) of the decompression process. Decompression
throughputs of both standard compressor and ISOBAR-
compress are listed in Table IX, also the speed-ups of
ISOBAR-compress, comparing to the faster one of either
standard bzlib2 or zlib, is included. In Table IX, 2
datasets’ throughputs increase from about 100 MB/s to more
than 1400 MB/s, which means the speed-ups are about 14.0,
15 of 19 had speed-ups greater than 3.0, all the other datasets’
decompression throughputs are improved. Test runs on per-
muted data sets yield approximately the same improvement as
the run on the original, non-permuted data.

IV. RELATED WORK

While the idea of preconditioning data for standard com-
pression routines is relatively unexplored (as far as we know),
there are many instances in which lossless compression is
required in the information storage and retrieval community.
For this reason, there is a wealth of related work on the
development of other lossless reduction tools. In this section,
we acknowledge and address the relevance and comparative
performance (in terms of compression ratio and throughput)
of these standalone utilities to those obtained via the ISOBAR-
compress workflow.

One such tool is PFOR [33], which aims to reduce the
I/O bottleneck in the compression routine by extracting
maximum instructions per cycle from modern CPUs. PFOR
[33] (and some similar variants including PDICT [33] and
PFOR-DELTA [33]) are specifically designed with the aim of
eliminating if-then-else constructs and value dependencies in
prediction and encoding of data. This strategy makes the data
being compressed or decompressed fully loop-pipelineable by

TABLE X
COMPARISON AMONG ISOBAR-COMPRESS, FPC [8] AND FPZIP [22].

Data Set ISOBAR-Sp FPC fpzip
CR1 TPC

2 TPD
3 CR TPC TPD CR TPC TPD

gts chkp zeon 1.140 104.99 517.89 1.018 38.22 39.24 1.096 35.80 29.48
gts chkp zion 1.150 111.66 551.90 1.025 38.42 38.98 1.100 36.47 30.20
gts phi l 1.160 66.36 366.25 1.077 24.06 23.93 1.182 38.66 31.44
gts phi nl 1.157 65.65 358.21 1.072 24.10 24.06 1.177 38.38 31.23
xgc igid 2.962 100.91 341.50 1.960 87.84 87.85 2.736 13.63 12.84
xgc iphase 1.571 76.83 388.87 1.360 17.66 17.43 1.535 44.89 36.12
flash gamc 1.532 245.19 940.91 1.416 91.64 90.06 1.620 38.70 31.72
flash velx 1.308 455.83 1617.02 1.265 49.61 49.70 1.342 36.77 31.39
flash vely 1.307 444.75 1538.98 1.294 53.80 53.37 1.435 38.47 32.11

mean 1.476 185.80 735.73 1.276 47.26 47.18 1.469 35.75 29.61
1 CR: Compression Ratio (see Equation 1)
2 TPC: Compression throughput tested on Lens system (MB per second)
3 TPD: Decompression throughput tested on Lens system (MB per second)

TABLE IX
DECOMPRESSION THROUGHPUT COMPARISON

Dataset zlib bzlib2 ISOBAR1

Sp2
(MB/s) (MB/s) (MB/s)

gts chkp zeon 115.22 10.48 517.89 4.5
gts chkp zion 110.38 10.57 551.90 5.0
gts phi l 114.41 10.00 366.25 3.2
gts phi nl 117.97 9.90 358.21 3.0
xgc igid 177.69 21.08 341.50 1.9
xgc iphase 138.99 7.49 388.87 2.8

s3d temp† 113.80 6.26 250.46 2.2

s3d vmag† 103.69 6.73 424.79 4.1
flash velx 113.95 10.51 1617.02 14.2
flash vely 112.03 10.53 1538.98 13.7
flash gamc 113.41 12.02 940.91 8.3
msg lu 112.51 10.51 866.21 7.7
msg sp 106.77 10.68 527.18 4.9
msg sweep3d 114.43 6.89 446.49 3.9
num brain 114.47 6.55 908.65 7.9
num comet 123.08 7.69 145.73 1.2
num control 122.13 7.28 373.63 3.1
obs info 118.61 7.27 910.12 7.7
obs temp 114.10 6.59 511.98 4.5
† Single-precision floating-point dataset
1 ISOBAR: Decompression throughput using ISOBAR-compress

with speed preference
2 Sp: Decompression speed-up comparing ISOBAR throughput

to the faster alternative of either bzlib2 or zlib

modern compilers and allows for out-of-order execution on
modern CPUs while achieving high Instructions Per Cycle
efficiency. Based on the experimental results provided in the
paper, PFOR performs approximately 4 times faster than
zlib and bzlib2 for most data sets tested, though its
compression ratios hardly beat those obtained with zlib
and bzlib2 (in some cases, the ratio is even 3 times
worse). ISOBAR-compress was designed to improve both
compression efficiency and throughput for general purpose
lossless compression techniques, such as zlib and bzlib2.
In the results section, we showed that ISOBAR-compress’s
performance almost universally surpassed the performance of

these compressors in terms of compression ratio and compres-
sion/decompression throughput.

General purpose lossless compression tools are also used
with MapReduce techniques. For example, RCFile [16] is an-
other reduction utility focusing on efficient storage of data pro-
duced from Hadoop MapReduce [3], [12] based applications.
RCFile compresses data tables sequentially column-wise, but
uses no intelligent technique to determine how the input data
should be optimally compressed, defaulting to zlib for all
data columns. For this reason, compression yielded with RC-
File varies in effectiveness, because it does not consider data-
type of columns and blindly relies on zlib compression and
a particular linearization, whereas other combinations of these
two factors may be more fruitful in compression ratio and
throughput. ISOBAR-compress’s EUPA-selector takes care of
this problem, and the workflow involves applying general-
purpose lossless compression techniques, particularly after the
ISOBAR-analyzer phase because of the varying sizes of values
in the data columns (for example, a column storing numerical
data may occupy 3 bytes per element in a MySQL database,
whereas some string type columns may require approximately
100 bytes per element).

Tools, such as fpzip [22] and FPC [8] are also widely
used in scientific database compression applications. Although
fpzip and FPC are tools designed only for compression
of 32 (fpzip) or 64 (fpzip and FPC) bit floating point
data , their performance is also competitive (when compared
to other lossless compression techniques) on other types of
variously-sized scientific data. Hence, it is worthwhile intro-
ducing and comparing these utilities with ISOBAR-compress.
Both fpzip and FPC are based on context modeling and
prediction. Fpzip traverses data in a coherent order and
then uses the corresponding n-dimensional (where n is the
dimensionality of the data) Lorenzo predictor [17] to predict
the subsequent values. It next maps the predicted values and
actual values to their integer representations, and encodes
the XORd́ residual between these values. Similarly, FPC first
predicts values sequentially using two predictors (fcm [32]

and dfcm [15]), and subsequently selects the closer predicted
value to the actual. Lastly, FPC XORs the selected predicted
value with the actual value, and compresses the leading-zero
result. We compared the performance of ISOBAR-compress,
fpzip, and FPC on identified scientific datasets in Table X.

It is briefly worth addressing that there has also been
a wealth of research done on the lossy compression front.
Methods using DCT (Discrete Cosine Transform) [30] and
wavelets [10] have been actively researched over the last few
decades in the lossy compression realm. These works have
primarily been applied in the context of visualization and
geometric modeling applications. Lakshminarasimhan et al.
explored the use of B-spline modeling to exploit monotonic
properties in sorted data and reduce size by as much as 85%
of the original [20]. Multi-dimensional histogram binning has
also been used in the lossy reduction of simulation data.
However, these techniques are not applicable in the reduction
of certain types of simulation data and checkpoint/restart data
as inaccuracies in these values can completely throw off a
simulation run and yield incorrect results.

V. CONCLUSION

In this paper, we proposed a new technique called ISO-
BAR-compress, which is a preconditioner to identify hard-to-
compress datasets and improve compression efficiency for all
general-purpose lossless compression solvers.

Given a dataset requiring lossless compression, our sys-
tem first applies the ISOBAR-analyzer to determine whether
ISOBAR-compress will improve the performance of lossless
compression algorithms such as zlib. If performance can
be improved, then the ISOBAR-partitioner will segment the
dataset into two pieces: compressible and incompressible
data. EUPA-selector will choose the optimal combination
of standard lossless compression methods and proper multi-
dimensional data linearization to meet the end-user’s prefer-
ence in terms of better compression ratio vs. much higher
compression speed. Finally, ISOBAR-compress will merge the
metadata, compressed data, and incompressible data into an
output file. When tested on 24 scientific datasets, ISOBAR
demonstrated high compression and decompression through-
put as well as an improved compression ratio upon standard
compressors.

ACKNOWLEDGMENT

We would like to acknowledge the use of resources at
ORNL’s and ANL’s leadership class computing facilities,
OLCF and ALCF, respectively. Also, we appreciate the use
of the datasets available from the Flash Center for Com-
putational Science. This work was supported in part by the
U.S. Department of Energy, Office of Science (SciDAC SDM
Center, DE-AC02-06CH11357, DE-SC0004935, DE-FC02-
10ER26002, DE-FOA-0000256, DE-FOA-0000257) and the
U.S. National Science Foundation (Expeditions in Comput-
ing). Oak Ridge National Laboratory is managed by UT-
Battelle for the LLC U.S. D.O.E. under contract no. DEAC05-
00OR22725.

REFERENCES

[1] Bzip2, 2010. http://www.bzip.org/.
[2] Zlib, 2010. http://www.zlib.net/.
[3] Hadoop MapReduce, 2011. http://hadoop.apache.org/mapreduce/.
[4] B. Fryxell and K. Olson and P. Ricker and F. X. Timmes and M.

Zingale and D. Q. Lamb and P. MacNeice and R. Rosner and J. W.
Truran and H. Tufo. FLASH: An adaptive mesh hydrodynamics code
for modeling astrophysical thermonuclear flashes. The Astrophysical
Journal Supplement Series, 131:273–334, November 2000.

[5] M. Benzi. Preconditioning techniques for large linear systems: A survey.
J. COMPUT. PHYS, 182:418–477, 2002.

[6] M. Burrows and D. J. Wheeler. A block-sorting lossless data compres-
sion algorithm. HP Labs Technical Reports, 1994.

[7] M. Burtscher and P. Ratanaworabhan. High throughput compression
of double-precision floating-point data. In IEEE Data Compression
Conference, pages 293–302, 2007.

[8] M. Burtscher and P. Ratanaworabhan. FPC: A high-speed compressor for
double-precision floating-point data. IEEE Transactions on Computers,
58:18–31, 2009.

[9] M. Burtscher and I. Szczyrba. Numerical modeling of brain dynamics
in traumatic situations - Impulsive Translations. In Mathematics and
Engineering Techniques in Medicine and Biological Scienes, pages 205–
211, 2005.

[10] C. Chang and B. Girod. Direction-adaptive discrete wavelet transform
for image compression. Image Processing, IEEE Transactions on,
16(5):1289 –1302, may 2007.

[11] J. H. Chen, A. Choudhary, B. De. Supinski, M. DeVries, S. Klasky
E. R. Hawkes, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki,
S. Shende R. Sankaran, and C. S. Yoo. Terascale direct numerical
simulations of turbulent combustion using S3D. Computational Science
and Discovery, 2(1):015001, 2009.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. Commun. ACM, 51:107–113, January 2008.

[13] R. D. Falgout. An introduction to Algebraic Multigrid. Computing in
Science and Engg., 8:24–33, November 2006.

[14] R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual
method for non-Hermitian linear systems. Numerische Mathematik,
60:315–339, 1991. 10.1007/BF01385726.

[15] B. Goeman, H. Vandierendonck, and K. D. Bosschere. Differential FCM:
Increasing value prediction accuracy by improving table usage efficiency.
In Seventh International Symposium on High Performance Computer
Architecture, pages 207–216, 2001.

[16] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. RCFile:
A fast and space-efficient data placement structure in MapReduce-based
warehouse systems. In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 1199–1208, April 2011.

[17] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. Out-of-core
compression and decompression of large n-dimensional scalar fields.
Computer Graphics Forum, 22:343–348, 2003.

[18] K. Konstantinides and K. B. Natarajan. An architecture for non-linear
noise filtering via piecewise linear compression. HP Labs Technical
Reports, 1994.

[19] S. Ku, C.S. Chang, and P.H. Diamond. Full-f gyrokinetic particle
simulation of centrally heated global ITG turbulence from magnetic axis
to edge pedestal top in a realistic Tokamak geometry. Nuclear Fusion,
49(11):115021, 2009.

[20] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova. Compressing the incompressible with
ISABELA: In-situ reduction of spatio-temporal data. In Euro-Par, 2011.

[21] J. K. Lawder and P. J. H. King. Querying multi-dimensional data indexed
using the Hilbert Space-Filling Curve. SIGMOD Record, 30:2001, 2001.

[22] P. Lindstrom and M. Isenburg. Fast and efficient compression of floating-
point data. IEEE Transactions on Visualization and Computer Graphics,
12:1245–1250, 2006.

[23] B. K. Natarajan. Filtering random noise via data compression. Data
Compression Conference, pages 60 –69, 1993.

[24] B. K. Natarajan. Occam’s razor for functions. In Proceedings of the
Sixth Annual Conference on Computational Learning Theory, COLT ’93,
pages 370–376, New York, NY, USA, 1993. ACM.

[25] W. D. Pence, R. Seaman, and R. L. White. Lossless astronomical image
compression and the effects of noise. Publications of the Astronomical
Society of the Pacific, 121:414–427, Apr 2009.

[26] J. M. Prusa, P. K. Smolarkiewicz, and A. A. Wyszogrodzki. Simulations
of gravity wave induced turbulence using 512 PE CRAY T3E. In Inter-
national Journal of Applied Mathematics and Computational Science,
pages 101–115, 2001.

[27] Y. Sehoon and W. A. Pearlman. Critical encoding rate in combined
denoising and compression. In Image Processing, 2005. ICIP 2005.
IEEE International Conference on, volume 3, pages III – 341–4, Sept.
2005.

[28] C. E. Shannon. Prediction and entropy of printed English. Bell Systems
Technical Journal, 30:50–64, 1951.

[29] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.
Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam. Gyro-
kinetic simulation of global turbulent transport properties in Tokamak
experiments. Physics of Plasmas, 13(9):092505, 2006.

[30] A. B. Watson. Image compression using the discrete cosine transform.
Mathematica Journal, 4:81–88, 1994.

[31] T. A. Welch. A technique for high-performance data compression.
Computer, 17(6):8–19, June 1984.

[32] S. Yiannakis and J. E. Smith. The predictability of data values. In
Proceedings of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 30, pages 248–258, Washington, DC, USA,
1997. IEEE Computer Society.

[33] M. Zukowski, S. Hman, N. Nes, P. A. Boncz, M. Zukowski, S. Hman,
N. Nes, and P. Boncz. Super-scalar RAM-CPU cache compression. In
Proceedings of the International Conference of Data Engineering (IEEE
ICDE), page 59. IEEE Computer Society, 2006.

APPENDIX

Datasets with the prefix “gts” and “xgc” in name are gen-
erated from the scientific applications: Gyrokinetic Tokamak
Simulation (GTS) [29] and full-function X-point included
Gyrokinetic Code (XGC) [19].

1) gts phi l: linear potential fluctuation variable values of
particle-based simulations of fusion plasmas to study
plasma micro-turbulence in reactor core and edge.

2) gts phi l: nonlinear potential fluctuation variable values
of the same simulations of fusion plasmas.

3) gts chkp zeon: values for zeon variable’s checkpoint
restart data for each 10th time-step of GTS simulation.

4) gts chkp zion: values for zion variable’s checkpoint
restart data for each 10th time-step of GTS simulation.

5) xgc igid: ID number of each particle on the fusion
plasma edge during XGC simulation.

6) xgc iphase: indicates 8 phase variables of each ion
during XGC simulation.

In the application of velocity in the field of astrophysics,
there are three datasets for 3 variables respectively generated
by code development at the Flash Center: flash velx, flash vely
and flash gamc [4]. Here is the brief illustration of the three
datasets.

1) flash velx: fluid velocity x variable values for FLASH.

2) flash vely: fluid velocity y variable values for FLASH.
3) flash gamc: fluid velocity gamc variable values for

FLASH.
Two single floating-point datasets s3d temp and s3d vmag

are generated by the three-dimensional solver application
(S3D) [11] used for direct numerical simulations of turbulent
combustion.

1) s3d temp: temperature values of S3D simulation.
2) s3d vmag: magnitude of vectors sensed by the toroidal

devices.
These dataset names starting with “obs” [8] and “num” [7]

comprise measurements from scientific observational instru-
ments and numeric simulations:

1) obs error: data values specifying brightness temperature
errors of a weather satellite.

2) obs info: latitude and longitude information of the ob-
servation points of a weather satellite.

3) obs spitzer: data from the Spitzer Space Telescope
showing a slight darkening as an extra-solar planet
disappears behinds its star.

4) obs temp: data from a weather satellite denoting how
much the observed temperature differs from the actual
contiguous analysis temperature field.

5) num brain: simulation of the velocity field of a human
brain during a head impact.

6) num comet: simulation of the comet Shoemaker-Levy 9
entering Jupiter atmosphere.

7) num control: control vector output between two mini-
mization steps in weather-satellite data assimilation.

8) num plasma: simulated plasma temperature evolution of
a wire array z-pinch.

Parallel messages datasets have the prefix “msg” [8]. These
5 datasets contain the numeric messages sent by a node in a
parallel system running NAS Parallel Benchmark (NPB) and
ASCI Purple applications:

1) msg bt: NPB computational fluid dynamics pseudo-
application bt.

2) msg lu: NPB computational fluid dynamics pseudo-
application lu.

3) msg sp: NPB computational fluid dynamics pseudo-
application sp.

4) msg sppm: ASCI Purple solver sppm.
5) msg sweep3d: ASCI Purple solver sweep3d.

