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SUMMARY

Exploding dataset sizes from extreme-scale scientific simulations necessitates efficient data management
and reduction schemes to mitigate I/O costs. With the discrepancy between I/O bandwidth and computa-
tional power, scientists are forced to capture data infrequently, thereby making data collection an inherently
lossy process. Although data compression can be an effective solution, the random nature of real-valued sci-
entific datasets renders lossless compression routines ineffective. These techniques also impose significant
overhead during decompression, making them unsuitable for data analysis and visualization, which require
repeated data access.

To address this problem, we propose an effective method for In situ Sort-And-B-spline Error-bounded
Lossy Abatement (ISABELA) of scientific data that is widely regarded as effectively incompressible. With
ISABELA, we apply a pre-conditioner to seemingly random and noisy data along spatial resolution to
achieve an accurate fitting model that guarantees a > 0.99 correlation with the original data. We further
take advantage of temporal patterns in scientific data to compress data by � 85%, while introducing only a
negligible overhead on simulations in terms of runtime. ISABELA significantly outperforms existing lossy
compression methods, such as wavelet compression, in terms of data reduction and accuracy.

We extend upon our previous paper by additionally building a communication-free, scalable parallel
storage framework on top of ISABELA-compressed data that is ideally suited for extreme-scale analyti-
cal processing. The basis for our storage framework is an inherently local decompression method (it need
not decode the entire data), which allows for random access decompression and low-overhead task division
that can be exploited over heterogeneous architectures. Furthermore, analytical operations such as correla-
tion and query processing run quickly and accurately over data in the compressed space. Copyright © 2012
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Spatio-temporal data produced by large-scale scientific simulations easily reaches terabytes per run.
Such data volume poses an I/O bottleneck—both while writing the data into the storage system dur-
ing simulation and while reading the data back during analysis and visualization. To alleviate this
bottleneck, scientists have to resort to subsampling, such as capturing the data every sth timestep.
This process leads to an inherently lossy data reduction.
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In situ data processing—or processing the data in-tandem with the simulation by utilizing either
the same compute nodes or the staging nodes—is emerging as a promising approach to address the
I/O bottleneck [1]. To complement existing approaches, we introduce an effective method for In situ
Sort-And-B-spline Error-bounded Lossy Abatement (ISABELA) of scientific data [2]. ISABELA is
particularly designed for compressing spatio-temporal scientific data that is characterized as being
inherently noisy and random-like and thus commonly believed to be incompressible [3]. In fact, the
majority of the lossless compression techniques [4, 5] are not only computationally intensive and
therefore hardly suitable for in situ processing but also are unable to reduce such data by more than
10% of its original size (see Section 3).

The intuition behind ISABELA stems from the following three observations. First, while being
almost random and noisy in its natural form—when sorted—scientific data exhibits a very strong
signal-to-noise ratio due to its monotonic and smooth behavior in its sorted form. Second, prior work
carried out in curve fitting [6,7] has shown that monotone curve fitting, such as monotone B-splines,
can offer some attractive features for data reduction including, but not limited to, their goodness of
fit with significantly fewer coefficients to store. Finally, the monotonicity property of the sorted
data gets preserved in most of its positions with respect to adjacent time steps in many instances.
Hence, this property of monotonic inheritance across temporal resolution offers yet another venue
for improvement of the overall data compression ratio.

Although intuitively simple, ISABELA has addressed a number of technical challenges imposed
by end-user requirements. One of the most important factors for the user’s adoption of any lossy data
reduction technology is the assurance that the user-acceptable error-bounds are respected. Because
curve fitting accuracy is often data-dependent, ISABELA must be robust in its approximation.
Although curve fitting operations are traditionally time consuming, performing the compression
in situ mandates ISABELA to be fast. Finally, while data sorting—as a pre-conditioner for data
reduction—is ‘a blessing’, it is ‘a curse’ at the same time; re-ordering the data requires keeping
track of the new position indices to associate the decoded data with its original ordering. Although
management of spline coefficients could be viewed as a light-weight task, the heavy-weight index
management forces ISABELA to make some non-trivial decisions between the data compression
rates and the data accuracy.

In this paper, we extend the work published in an earlier conference [2]. Additional material in
this paper discusses parallel compression with ISABELA and the overall data workflow behind the
compression engine. A more comprehensive analysis appears here, with the effect of window size
on accuracy and benchmarks on datasets from additional petascale simulations. Furthermore, we
explore a related research question on the quantitative, visual, and qualitative impact of performing
query-driven analytics over ISABELA-compressed data.

2. A MOTIVATING EXAMPLE

Much of the work for in situ data reduction in this paper stems from particle simulation codes,
specifically Gyrokinetic Tokamak Simulation (GTS) [8] and X-point include Gyrokinetic Code
(XGC1) [9] which respectively simulate microturbulence of magnetically confined fusion plasmas
of toroidal devices in cores and edges of fusion reactors.

Production runs of these simulation applications typically consume hundreds of thousands of
cores on petaflop systems, such as NCCS/ORNL Jaguar [10], utilizing the ADIOS library [11] for
performing I/O intensive operations.

Simulation data sets can be broadly divided into: (i) checkpoint data to restart the simulation
in case of an execution failure (C&R); (ii) analysis (A) data, such as density and potential
fluctuations, for performing various post-processing physics analyses; and (iii) diagnostics data
used, for example, for code validation and verification (V&V) (see Table I).

Unlike C&R data that requires lossless compression, analysis (A) data is inherently lossy, and
as such, it can tolerate some error-bounded loss in its accuracy. What is more important is that it
is the analysis data that is being accessed many times by different scientists using various analysis
and visualization tools or Matlab physics analysis codes. Therefore, aggressive data compression
that could enable interactive analytical data exploration is of paramount concern and is therefore the
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Table I. Summary of Gyrokinetic Tokamak simulation output data by different categories.

Categoryt Write frequency Read access Size/write Total size

C&R Every 1–2 h Once or never A few TBs �TBs
A Every 10th time step Many times A few GBs �TBs
V&V Every 2nd time step A few times A few MBs �GBs

C&R, case of an execution failure; A, analysis; V&V, validation and verification.

main focus of ISABELA. For illustrative purposes, in the rest of the paper, we will use linearized
64-bit double precision floating point arrays. The temporal snapshots consist of series of 172,111
values organized one-dimensionally of both Potential and Density fluctuations from GTS analysis
data, a series of 4096 values organized three-dimensionally from flash astrophysics data, and a series
of 124,701 turbulence intensity values organized one-dimensionally from XGC1 analysis data.

3. PROBLEM STATEMENT

The inherent complexity of scientific spatio-temporal data drastically limits the applicability of both
lossless and lossy data compression techniques and presents a number of challenges for new method
development. Such data not only consists of floating-point values but also exhibits randomness
without any distinct repetitive bit and/or byte patterns (also known as high entropy data, and hence
incompressible [12, 13]). Thus, applying standard lossless compression methods do not result in an
appreciable data reduction.

Table II illustrates the compression rates achieved and the time required to compress and
decode 12,836 KB of GTS analysis data by state-of-the-art methods. In addition, scientific data
often exhibits a large degree of fluctuations in values across even directly adjacent locations in
the array. These fluctuations render lossy multi-resolution compression approaches like wavelets
[14] ineffective.

The compression ratio CRM .D/ of a compression method M for data D of size jDj reduced to
size jDM j is defined by Equation (1)

CRM .D/D
jDj � jDM j

jDj
� 100%. (1)

The accuracy of lossy encoding techniques is measured using Pearson’s correlation coefficient
.�/ and normalized root mean square error between an N�dimensional original data vector
D D .d0, d1, : : : , dN�1/ and decompressed data vector D0 D .d 00, d 01, : : : , d 0N�1/ defined by
Equations (2) and (3)
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Table II. Performance of examplar lossless and lossy data compression methods.

Metric FPC LZMA ZIP BZ2 ISABELA Wavelets B-splines

Lossless? Yes Yes Yes Yes No No No
CRM (%) 3.12 2.72 1.13 1.11 81.44* 22.51* 0*
Compression (sec.) 0.58 7.01 1.03 3.96 0.93 0.62 0.78
Decompression (sec.) 0.56 1.38 0.49 1.18 1.05 0.58 0.82

FPC is a floating-point compressor [5], and LZMA, BZ, ZIP here, represent implementations of Lempel–Ziv–
Markov chain, DEFLATE, Burrows-Wheeler algorithms respectively.
The compression method with the highest compression rate is indicated in bold.
�CR achieved by lossy models for 0.99 correlation and 0.01 normalized root mean standard error fixed accuracy.
All runs are performed on an Intel Core 2 Duo 2.2-GHz processor with 4-GB RAM, openSUSE Linux v11.3.
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Capturing both normalized root mean standard error (NRMSE) and � provides not only the
extent of error but also measures the degree to which the original and approximated data are
linearly related. Thus, achieving NRMSEM .D/ � 0, �.D/ � 1 and CR � 100% would indicate
ideal performance.

4. THEORY AND METHODOLOGY

Existing multi-resolution compression methods often work well on image data or time-varying
signal data. For scientific data-intensive simulations, however, data compression across the temporal
resolution requires data for many timesteps be buffered in memory, which is, obviously, not a
viable option. Applying lossy compression techniques on this data across the spatial resolution
requires a significant trade-off between the compression ratio and the accuracy. Hence, to extract
the best results out of the existing approximation techniques, a transformation of this data layout
becomes necessary.

4.1. Sorting-based data transformation

Sorting changes the data distribution in the spatial domain from a highly irregular signal
(Figure 1(A)) to a smooth and monotonous curve (Figure 1(B)). The rationale behind sorting—
as a pre-conditioner for a compression method—is that fitting on a monotonic curve can provide
a model that is more accurate than one on unordered and randomly distributed data. Figure 1
illustrates the significant contrast in how closely (D) or poorly (C) the decompressed data approx-
imates the original data when the B-splines curve fitting [15] operates on sorted versus unsorted
data, respectively.

(A)
Original Data

Sorted Data Decompressed Sorted 

Decompressed Original 

(C)

(B) (D)

Figure 1. A slice of GTS potential: (A) original; (B) sorted; (C) decoded after B-splines fitting to original;
and (D) decoded after B-splines fitting to sorted.
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4.2. Background: cubic B-splines fitting

Sorting the data in an increasing order provides a sequence of values whose rate of change is
guaranteed to be the slowest. Although this sequence resembles a smooth curve, performing curve
fitting using nonlinear polynomial interpolation becomes difficult for complex shape curves. Com-
puting interpolation constants for higher-order polynomials in order to fit these complex curves is
computationally intensive for in situ processing.

A more effective technique is spline curve fitting. A spline curve is a sequence of curve segments
joined together via knots that produce a single continuous curve. Each piece of the curve segment
is then defined via a lower-order polynomial function. The use of several lower-order polynomial
functions to fit smaller regions of the curve tends to perform highly efficiently when compared with
using a higher-order polynomial function to fit the entire curve.

A B-spline curve is a sequence of piecewise parametric curves. A cubic B-spline is composed of
polynomial functions of degree d D 3, which has faster interpolation time and produce ‘smooth’
curves (i.e., second-order differentiable) at the knot locations. Knot locations are points in the
parameter space that describe the start and end of a curve segment.

As an example, consider the cubic B-spline curve in Figure 2 with six control points, P1, : : : ,P6,
and 10 knots, u1, : : : ,u10, u1 D � � � D u4 D 0 and u7 D : : : D u10 D 1.0. The knot points are the
end-points of the piecewise curve segments, S1,S2, and S3, given by S1 D bs1s2, S2 D bs2s3, and
S3 Dbs3s4, each defined in its parameter space, u 2 Œ0, 1�. The control points P define the shape of
the curve.

More formally, given a set ofm control points P D fP1,P2, : : : ,Pmg and a knot vector U with its
sequence of knots, u1 6 u2 6 : : :6 uk , k DmCdC1, 8ui 2 Œ0, 1�, the B-spline parametric curve,
S W Œu1,uk�!R2, is defined by a linear combination of its basis functions Bi ,j .u/ via Equation (4)

S.u/D

mX
iD1

Bi ,d .u/Pi , where (4)

Bi ,0.u/D

�
1, if ui 6 u < uiC1
0, otherwise

Bi ,j .u/D
u� ui

uiCj � ui
Bi ,j�1.u/C

uiCjC1 � u

uiCjC1 � uiC1
BiC1,j�1.u/, (5)

where j D 1, d and i D 1,m, and the basis functions Bi ,j .u/ determine the extent to which the
control points P affect the shape of the curve. Thus, splines can control the local shape of the
curve without affecting the shape of the curve globally. This also implies that both curve fitting
and interpolation are efficient operations and can provide location-specific data decoding without

u1 = u2 = u3 = u4 = 0 u5 u6 u7 = u8 = u9 = u10 = 1

P1

P2

P3

P4

P5

P6

s1

s2

s3

s4

Figure 2. A cubic B-spline fitting with m D 6 control points, k D 10 knots, and with three piecewise
cubic segments.
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decompressing all the data. Although sorting does re-arrange the points, location-specific decoding
is still possible by performing an additional single level translation of data location from the original
to the sorted vector and then retrieving the interpolated value on the sorted B-spline curve.

4.3. Maximizing compression ratio via window splitting

In this section, we look at approaches for maximizing the compression ratio, while maintaining
an accurate approximation model. Let us assume that the original data D is a vector of size N ,
namely, D D .d0, d1, : : : , dN�1/. This way, we can associate a value di with each index value
i 2 I D f0, 1, : : : ,N � 1g. Let us also assume that each vector element, di 2R, is stored as a 64-bit
double-precision value. Therefore, storing the original data requires jDj DN � 64 bits.

Assuming that D is a discrete approximation of some curve, its B-splines interpolation DB
requires storing only B-splines constants—the knot vector and the basis coefficients—in order to
reconstruct the curve. Let C denote the number of such 64-bit double-precision constants. Then,
storing the compressed data after B-splines curve fitting requires jDB j D C � 64 bits.

The random-like nature of D (see Figure 1(A)) requires C � N to provide accurate lossy
compression and hence, leads to a poor compression rate (see Table II, last column). However,
because of the nature of scientific datasets, applying B-splines interpolation after sortingD requires
only a few constants, C D O.1/ << N , in order to provide high decompression accuracy
(see Figure 1(D)).

Although significantly reducing the number of B-splines constants C , sortingD will re-order the

vector elements via some permutation � of its indices, namely, I
�
! I� D fi1, i2, : : : , iN g, such that

dij 6 dijC1 , 8ij 2 I� . As a result, we need to keep track of the new index I� so that we could
associate the decompressed sorted vector D� back to the original vector D by using its correct
index I . Because each index value ij requires log2N bits, the total storage requirement for I� is
jI� j DN � log2N bits. Therefore, the vector lengthN is the only factor that determines the storage
requirements for the index I� .

One way to optimize the overall compression ratio, CRISABELA, is to first split the entire vector
D into fixed-sized windows of size W0 (rounding up the size of the tail window for the simplicity
of analysis), or D D

S
Dk , Di \ Dj D ;, I k D f.k � 1/W0, .k � 1/W0 C 1, : : : , kW0 � 1g,

i , j , k 2 1,NW , i ¤ j , and NW D
l
N
W0

m
. Then, the B-splines interpolation is applied to each

window Dk separately.
With this strategy, ISABELA’s storage requirement for the compressed data is defined

by Equation (6)

jDISABELAj D

NWX
kD1

�
jDk

B j C jI
k
� j
�

, (6)

DNW � .C � 64CW0 � log2W0/

Substituting Equation (6) into Equation (1) and simplifying the resulting equation, we obtain the
following compression ratio for ISABELA defined by Equation (7)

CRISABELA.D/D

�
1�

log2.W0/

64
�
C

W0

�
� 100% (7)

From Equation (7), we can analytically deduce the trade-off between the window size W0 and
the number of B-splines constants C that give the best compression ratio. For example, for
W0 > 65, 536, the size of the index alone would consume more than 25% of the original data.
By fixing W0 D 1024, we balance the computational cost of sorting windows and the storage cost
for recording the index and the fitting coefficients, which results in an overall compression rate of
81.4% per time step. And empirically, we found that C D 30 and W0 D 1024 allows ISABELA to
achieve both > 0.99 correlation and < 0.05 NRMSE between the original and decompressed GTS
data, thus balancing for both accuracy and storage.
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4.4. Error quantization for guaranteed point-by-point accuracy

The aforementioned sorting-based curve fitting model ensures accurate approximation only on a per
window basis and not on a per point basis. As a result, in certain locations, the B-splines-estimated
data deviates from the actual by a margin exceeding a defined tolerance. For example, almost 95% of
the approximated GTS potential values average a 2% relative error, where the percentage of the rela-
tive error .�/ at each index i betweenD D .d0, d1, : : : , dN�1/ andDISABELA D

�
d 00, d 01, : : : , d 0N�1

�
is

defined as �i D
di�d

0
i

di
�100%. Although the number of such location points is reasonably low due to

accurate fitting achieved by B-splines on monotonic data, ISABELA guarantees that a user-specified
point-by-point error is respected by utilizing an error quantization strategy.

Storing relative errors between estimated and actual values enables us to reconstruct the data
with high accuracy. Quantization of these errors into a 32-bit integer results in a large degree of
repetition, where majority of the values lie between Œ�2, 2�. These integer values lend themselves
to high compression rates .75% � 90%/ with standard lossless compression libraries. These com-
pressed relative errors are stored along with the index during encoding. Upon decoding, applying
these relative errors ensures decompressed values to be within a user-defined threshold �� for per
point relative error.

4.4.1. Parallel compression. Fixing the window size and the number of coefficients in a window
keeps the compression design embarrassingly parallel, where each window can be compressed inde-
pendently. However, with the inclusion of error quantization, the size of the encoded errors and
hence, the size of the compressed window, no longer remains a constant. To write the compressed
data into a contiguous location, each thread must know a priori as to where to start writing the
B-spline coefficients, index mapping, and the encoded errors. This incurs communication overhead
when parallelizing the operation on a per window level. To overcome the delay because of commu-
nication, each thread is assigned the task of compressing a fixed number of windows and writing the
compressed data including the encoded errors to a local memory space. This data is then written out
to disk or passed to I/O libraries by iterating through the local memory of each thread. The number
of available threads is usually limited when compared with the number of windows of data; there-
fore, iterating on a per thread level incurs less overhead than moving the data around for contiguous
I/O. In fact, placing compression routines on nodes which produce data has been shown to be effec-
tive in reducing the time taken to move the data onto the disk [16]. Given that ISABELA achieves a
higher degree of data reduction than the ISOBAR [17] lossless compression technique proposed by
Schendel et al., further improvements in writing time can be expected.

4.5. Exploiting � encoding for temporal index compression

To a large extent, the ordering of the sorted data values is similar between adjacent timesteps, that
is, the monotonicity property of the data extends to index integer values. Hence, we apply a differ-
ential encoding scheme to the index vector I� before compressing the index using standard lossless
compression libraries. (Note that subsequent scheme is applied to each individual data windowDn.)

Suppose that at timestep t0, we first build the index I�.t0/ consisting of no redundant values,
which is essentially, incompressible. Hence, this index is stored as is. However, at the next timestep
t0C1, the difference in index values�IC1 D I�.t0C1/�I�.t0/ is small (see Figure 3) because of
monotonicity of the original data values Dn and hence, the sorted values across adjacent timesteps.

Thus, instead of storing the index values at each timestep, we store the index values at t0, denoted
as the reference index, along with the compressed pairwise index differences �IC1 between adja-
cent timesteps. But, in order to recover the data at time t0 C ıt , we must read in both the reference
index I�.t0/ and all the first-order differences �IC1 between adjacent timesteps in the time win-
dow .t0, t0Cıt/. Therefore, the higher value of ıt will adversely affect reading time. To address this
problem, we instead store and compress a higher-order difference, �ICj D I�.t0 C j / � I�.t0/,
where j 2 .1, ıt/, for the growing value of ıt until the size of the compressed index crosses a
user-defined threshold. Once the threshold is crossed, the index for the current timestep is stored as
is and is considered as the new reference index.
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Figure 3. Illustration of � encoding of the index across temporal resolution.
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Figure 4. Workflow of ISABELA compression engine from data generation to in situ compression
to storage.

4.6. ISABELA data workflow

Figure 4 depicts the overall data workflow behind the ISABELA compression engine, starting from
data generation to the organization of compressed data in storage. ISABELA compression is charac-
terized by a communication-free model which can be easily parallelized using OpenMP, GPU, and
multinode configurations. The parallelism can be extended to the I/O layer as well, thus enabling
efficient data analysis. The subsequent section discusses some of the design considerations for each
component of the workflow, along with their impacts on storage and accuracy.

5. RESULTS

Evaluation of a lossy compression algorithm primarily depends on the accuracy of the fitting model
and the compression ratio .CR/ achieved. As this compression is performed in situ, analysis of the
time taken to perform the compression assumes significance as well. Here, we evaluate ISABELA
with emphasis on the aforementioned factors using NRMSE and Pearson correlation .�/ between
the original and decompressed data as accuracy metrics.

5.1. Per window accuracy

In this section, we compare the Pearson correlation .�/ between the original and decompressed data
using wavelets and B-splines on original data and using ISABELA. The following parameters are
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Figure 5. Accuracy .�/: (a) Per window correlation for wavelets, B-splines, and ISABELA with fixed
CR D 81% for GTS density. (b) Per window correlation for GTS linear and nonlinear stage potential

decompressed by ISABELA.

fixed in this experiment:W0 D 1024,CB-spline D 150, andCISABELA D 30. This fixesCRD 81%, and
wavelet coefficients values are thresholded to achieve the same compression rate as well. Figure 5(a)
illustrates that ISABELA performs exceptionally well even for much smaller C values because of
the monotonic nature of the sorted data. In fact, � is > 0.99 for almost all the windows. However,
both wavelets and B-splines exhibit a large degree of variation and poor accuracy across different
windows. This translates to NRMSE values that are one-to-two orders of magnitude larger than the
average 0.005 NRMSE value produced by ISABELA.

In-situ Sort-And-B-spline Error-bounded Lossy Abatement performs exceptionally well on data
from the linear stages of the GTS simulation (first few thousand timesteps), as shown in Figure 5(b).
Yet, the performance for the nonlinear stages (timestep � 10, 000), where the simulation is charac-
terized by a large degree of turbulence is of particular importance to scientists. Figure 5(b), with
intentionally magnified correlation values, shows that accuracy for the nonlinear stages across
windows drops indeed. Unlike wavelets (Figure 5(a)), however, this correlation does not drop
below 0.92.

5.2. Effect of window size W0 on accuracy

In order to keep the compression design embarrassingly parallel, the size of the window W0 is kept
fixed. The choice of window size should not only have a low index storage footprint but also must
contain sufficient number of points to approximate the curve accurately. In Figure 6, we calculate
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Figure 6. Sensitivity of NRMSE values for ISABELA-compressed GTS potential data across 100 windows
over varying window sizes. The compression rate is fixed at CRD 81.44%.
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the NRMSE sensitivity to different values of constants C D 20, 30, 2 � log2.W0/ and to different
window sizes W0 with ISABELA.

One would expect that increasing W0 without increasing C would increase NRMSE. But this
is not the case. As it turns out, the data becomes highly smooth with larger W0. Hence, NRMSE
initially increases, but then it levels off as W0 keeps growing. When C D 2 � log2.W0/, that is,
the number of constants is kept constant proportional to the window size, NRMSE decreases as
W grows. The choice of W D 1024 and C D 30 balances the trade-off between accuracy and
compression rate, providing a fixed 81% reduction in the size of the data.

5.3. Trade-off between compression and per point accuracy

To alleviate the aforementioned problem, we apply error quantization, as described in Section 4.4.
In both linear and nonlinear stages of GTS simulation, the compression ratios are similar when the
per point relative error .��/ is fixed (see Figure 7(a)). This is because the relative error in consecu-
tive locations for the sorted data tends to be similar. This property lends well to encoding schemes.
Thus, even when the error tends to be higher in the nonlinear stage, compared with the linear stage,
the compression rates are highly similar. For �� D 0.1% at each point, the CR lowers to an around
67.6%. This implies that by capturing 99.9% of the original values, the data from the simulation is
reduced to less than one-third of its total size.

Figure 7(b) shows the compression ratio (with �� D 1%) over the entire simulation run using the
GTS fusion simulation and flash astrophysics simulation codes. For GTS potential data, the com-
pression ratio remains almost the same across all stages of the simulation. With flash, after error
quantization, most relative errors are 0’s. Compressing these values results in negligible storage
overhead and hence, CR remains at 80% for the majority of timesteps.

5.4. Effect of � encoding on index compression

In this section, we show that compressing along the time dimension further improves ISABELA’s
overall compression of spatio-temporal scientific datasets by up to 2%—5%. For example, on
density with W0 D 1024, the index size reduces from 15.63% to 10.63%–13.63% with index com-
pression. Table III shows the compression rates achieved for different orders of �ICj , j D 1, 2, 3.
Although increasingW0 improves spatial compression to a certain extent, it severely diminishes the
reduction of the index along the temporal resolution. This is because of the fact that with larger
windows and a larger ıt between timesteps, the difference in index values lacks the repetitiveness
necessary to be compressed well by standard lossless compression libraries.
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Figure 7. Compression ratio .CR/ performance: (a) For various per point relative error thresholds (��) in
GTS potential during linear and nonlinear stages of the simulation. (b) For various timesteps with �� D 1%
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Table III. Impact of � encoding on CR for potential (density).

W0 Without � encoding �IC1 �IC2 �IC3

512 80.08 (80.08) 81.83 (84.14) 81.87 (85.09) 81.68 (85.36)
1024 81.44 (81.44) 83.14 (85.65) 83.21 (86.57) 82.98 (86.76)
2048 81.34 (81.34) 83.03 (85.56) 83.07 (86.44) 82.88 (86.66)
4096 80.51 (80.51) 82.14 (84.64) 82.21 (85.51) 82.03 (85.76)
8192 79.32 (79.32) 80.99 (83.38) 81.04 (84.24) 80.83 (84.46)

The window size that results in the best compression rate is indicated in bold.

5.5. Compression time

The overhead induced on the runtime of the simulation because of in situ data compression is the
net sum of the times taken to sort D, build I� and perform cubic B-spline fitting. However, for a
fixed window size W0, sorting and building the index is computationally less expensive compared
with B-spline fitting. When executed in serial, ISABELA compresses data at average of around
12 MB/s rate, the same as gzip compression level 6, as shown in Table II. Within the context of the
running simulation, if each core generates around 10 MB of data every 10 s, it can be reduced to
�2 MB in 0.83 s using ISABELA. Additionally, to further reduce the impact of in situ compression
on the main computation, ISABELA can be executed at the I/O nodes rather than at the compute
nodes [18, 19].

In the case of compression, parallelization is achieved by compressing each window indepen-
dently. However, a more fine-grain parallelization can be applied to decompression, as each point in
the B-spline curve can be reconstructed independently. To evaluate the scalability and paralleliza-
tion characteristics of ISABELA decompression, we evaluate the time taken for decompression
against serial, OpenMP, and GPU-based implementations in a single node environment. Figure 8
shows the performance of decompression of all three implementations. The serial implementation
is faster when decompressing less than 1000 points, but as the number of decompressed points
increases, both GPU and OpenMP versions offer the advantage in terms of computational time.
This is especially true with a GPU-based implementation, which is better suited for fine-grain
parallel computation.

5.6. Performance for fixed compression

In this section, we evaluate the performance of ISABELA and wavelets on 13 public scientific
datasets (from numerical simulations, observations, and parallel messages) [4] and seven datasets
from petascale simulation applications for the fixed CR D 81%. For the wavelet transform, we
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Figure 8. Computational time for serial, CPU-parallelized, and GPU-parallelized versions of ISABELA’s
B-spline reconstruction part. Plots (a) and (b) compare performance when a small and large number of
points are reconstructed, respectively. Two Intel Xeon X5355 quad-core 2.66 Ghz processors equipped with
16 GB of RAM were used for serial execution and additionally, with 16 threads for OpenMP execution.

GPU execution utilized the NVIDIA C2050 card with 3 GB memory.
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Table IV. ISABELA versus wavelets for fixed CRD 81% and W0 D 1024.

�a NRMSEa

Wavelets ISABELA Wavelets ISABELA

msg_sppm 0.400˙ 0.287 0.982˙ 0.017 0.203˙ 0.142 0.051˙ 0.015
msg_bt 0.754 ˙ 0.371 0.981˙ 0.054 0.112˙ 0.151 0.038˙ 0.024
msg_lu 0.079˙ 0.187 0.985˙ 0.031 0.422˙ 0.103 0.048˙ 0.015
msg_sp 0.392˙ 0.440 0.967˙ 0.051 0.307˙ 0.243 0.064˙ 0.033
msg_sweep3d 0.952 ˙ 0.070 0.998˙ 0.006 0.075˙ 0.036 0.004˙ 0.003
num_brain 0.994˙ 0.008 0.983˙ 0.028 0.010˙ 0.011 0.011˙ 0.005
num_comet 0.988˙ 0.018 0.994˙ 0.025 0.020˙ 0.020 0.010˙ 0.006
num_control 0.614˙ 0.219 0.993˙ 0.017 0.083˙ 0.037 0.009˙ 0.002
num_plasma 0.605 ˙ 0.062 0.994 ˙ 0.004 0.277˙ 0.038 0.033˙ 0.004
obs_error 0.278˙ 0.203 0.994˙ 0.004 0.303˙ 0.091 0.024˙ 0.009
obs_info 0.717˙ 0.136 0.993˙ 0.006 0.181˙ 0.078 0.026˙ 0.016
obs_spitzer 0.992˙ 0.001 0.742˙ 0.004 0.005˙ 0.000 0.030˙ 0.000
obs_temp 0.611 ˙ 0.114 0.994˙ 0.011 0.096˙ 0.025 0.009˙ 0.003
gts_phi 0.886 ˙ 0.030 0.998˙ 0.003 0.075˙ 0.051 0.004˙ 0.001
gts_zion 0.246 ˙ 0.024 0.996˙ 0.003 0.146˙ 0.143 0.021˙ 0.009
gts_zeon 0.232˙ 0.039 0.995˙ 0.003 0.242˙ 0.063 0.018˙ 0.005
xgc_iphase 0.235˙ 0.027 0.992˙ 0.013 0.291˙ 0.012 0.022˙ 0.022
flash_gamc 0.918 ˙ 0.063 0.989˙ 0.010 0.087˙ 0.057 0.008˙ 0.007
flash_velx 0.893 ˙ 0.055 0.999˙ 0.005 0.129˙ 0.059 0.003˙ 0.002
flash_vely 0.937 ˙ 0.054 0.993˙ 0.008 0.079˙ 0.047 0.003˙ 0.003

Bold values identify the compression method that provides higher correlation, lower NRMSE on each of
the datasets.

use the ‘fields’ library package in R. To fix the compression ratio, the wavelet coefficients with
the lowest absolute values are reduced to 0. We then compare the averages of �a and NRMSEa
of ISABELA and wavelets across 400 windows (see Table IV). Out of the 20 datasets, 18 (three)
datasets exhibit �a D 0.98 with ISABELA (wavelets). The NRMSEa values for wavelets are
consistently an order of magnitude higher than for ISABELA. Wavelets outperform ISABELA on
obs_spitzer, which consists of a large number of piecewise linear segments for most of its
windows. Cubic B-splines do not estimate well when data segments are linear.

5.7. Performance for fixed accuracy

From the end-user perspective, the input arguments are defined by accuracy levels. In this section,
we evaluate the storage footprint of ISABELA under strict accuracy constraints of � > 0.99, and
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Figure 9. Compression ratio .CR/ performance with per window constraint � > 0.99 and NRMSE< 0.01:
(a) On each window, with varying number of coefficients, in flash velx. (b) Overall storage cost over 400

windows across various petascale simulation datasets.
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NRMSE < 0.01. Figure 9(a) contrasts the storage consumed by wavelets against ISABELA, when
the number of coefficients saved per window with both methods are made flexible. In the case of
ISABELA, the compression ratio in each window remains close to the fixed values .C D 30/. Even
on hard-to-compress datasets like gts_zion, as seen in Figure 9(b), ISABELA offers 3� reduction
compared with wavelets at the same accuracy levels.

5.8. Scientific data analysis on ISABELA-compressed data

Scientific data is qualitatively analyzed using visualization routines and statistically using script-
ing languages. More often than not, scientists need to explore the data in order to formulate their
hypotheses, which are subsequently analyzed using the above routines. To perform exploratory data
analysis, large volumes of scientific data need to be queried efficiently and repeatedly. In this section
we take a detailed look at how compressing data with ISABELA affects the analysis of scientific
data from simulations.

5.8.1. Quantitative analysis. Consider the case of XGC [9], a particle simulation code for ana-
lyzing the turbulence in Tokamak edge plasmas in nuclear reactors. One output produced by the
simulation is the turbulence of particles across grids that are divided into radial zones. To ana-
lyze this data, scientists often look at the time-based correlation of normalized turbulence intensity
values across surfaces spanning different radial zones. Table V shows the correlation matrix on
average turbulence intensity values between five radial zones. Table VI holds the same correlation
matrix but on ISABELA-compressed data. The absolute difference of the derived analysis between
ISABELA-compressed and original data is minimal.

5.8.2. Visual analysis. Visualization tools are one of the primary aides of scientific data analysis.
As these tools are used for interactive and real-time analysis, they benefit from large-scale data
reduction that alleviates the bottleneck because of slow I/O accesses. In this section, we evaluate the
accuracy of ISABELA-compressed data on visual analysis. We use the example of the XGC data
analysis routine, similar to the scenario mentioned earlier. Apart from calculating the correlation,
the normalized turbulence intensity values across different regions of the grid are visualized as time
series. Figure 10 compares the plot of turbulence intensity values over 620 timesteps for original
and ISABELA-compressed data with � D 0.1% error quantization. ISABELA accurately captures
the physical phenomena as seen with the original data.

Table V. XGC data analysis showing the correlation between radial
zones on the original data.

Zone Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

1 1 0.64 0.35 0.60 0.82
2 0.64 1 �0.05 0.38 0.86
3 0.35 �0.05 1 0.62 0.05
4 0.60 0.38 0.62 1 0.54
5 0.82 0.86 0.05 0.54 1

Table VI. Impact of error quantization on correlation between radial zones on ISABELA-compressed data,
and the difference with the correlation over original data.

Zone Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

1 1 (0.000) 0.64 (0.053) 0.35 (0.005) 0.60 (0.015) 0.82 (0.074)
2 0.64 (0.053) 1 (0.000) �0.05 (0.098) 0.38 (0.032) 0.86 (0.071)
3 0.35 (0.005) �0.05 (0.098) 1 (0.000) 0.62 (0.022) 0.05 (0.005)
4 0.60 (0.015) 0.38 (0.032) 0.62 (0.022) 1 (0.000) 0.54 (0.079)
5 0.82 (0.074) 0.86 (0.071) 0.05 (0.005) 0.54 (0.079) 1 (0.000)
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Figure 10. High fidelity visual analysis with ISABELA-compressed data.

5.8.3. Quality of query-driven analysis. Scientific discovery in general is supported by the need to
repeatedly query a large amount of data for hypothesis testing or to perform exploratory analytics.
An example of a query-driven hypothesis is ‘which locations in the grid have temperature < 25ı

Celsius.’ This problem could be solved using database indexing techniques for query processing.
However, at the current scale and rate of data production, indices used to accelerate query process-
ing are more voluminous than the actual data. The strain on storage becomes unacceptable and the
processing again becomes inefficient because of heavy I/O.

In ISABELA-QA [20], we presented a scalable query processing technique on ISABELA-
compressed data that is lightweight in terms of storage and memory footprint, while being efficient
for large-scale data analysis. ISABELA-QA delivers an order of magnitude faster response times
over state-of-the-art indexing techniques.

In this section, we analyze the quality of data obtained from ISABELA-compressed data.
Figure 11 shows the variation of precision in the retrieved result over varying query selectivity
sizes. Query selectivity here refers to the ratio of the amount of data returned by the query to the
actual data, and precision refers to the number of ‘relevant’ data points retrieved divided by the
total number retrieved. Naturally, when the user-defined relative error parameter .�/ is decreased
when storing the data, the quality of query results on ISABELA-compressed data becomes more
accurate. On a query of the form variable < value, increasing the selectivity results in precision
value � 1 (Figure 11). This is because when the data follows a normal distribution, the absolute
value of errors includes a larger number of points at the tails, which results in lower precision or
larger false positive rates. To ensure false negatives do not exist, user-defined queries are rewritten
on ISABELA-compressed data to include the range˙�.
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Figure 11. Precision of query results obtained on ISABELA-compressed 3.2-GB GTS potential data.
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6. RELATED WORK

Lossy compression methods based on spline fitting or wavelets have been primarily used in
the field of visualization, geometric modeling, and signal processing. Very few studies applied
such techniques when neither spatial nor temporal correlation of data can be directly exploited.
Chou et al. [21] and Lee et al. [22] explored spline fitting for random data to optimize the location
of control points to reduce approximation error. In contrast, we aim to transform the data to take
advantage of the accuracy and easily expressible qualities of splines.

Extensively used lossy compression techniques like discrete cosine transform (DCT) and dis-
crete wavelet transform (DWT) utilize spatial properties inherent in scientific data to achieve
compression. DCT and DWT transform the data into frequency and spatio-frequency domains,
respectively, reducing the number of coefficients required to capture the data in the transformed
space. Compression is achieved by thresholding away coefficients with small values.

The robustness of the sorting pre-conditioner is evident from the aforementioned results obtained
using ISABELA, which outperforms transform-based wavelet reduction. As an alternate to
B-spline-based reduction after sorting, the use of transform-based techniques to compress mono-
tonic data can be effective as well. In a monotonic set of values, the spatial correlation of data is
maximized, and both DCT and DWT can be expected to provide comparable levels of accuracy.

However, even as accuracy levels remain comparable with ISABELA, point-wise decompres-
sion will no longer be possible. Query-driven analytics require local decompression in order to be
efficient, which is lost when performing multilevel transformations on the data.

Lossless compression techniques [4, 5, 23, 24] have been recently applied to floating point data.
Unlike most lossless compression algorithms, the techniques presented in [4, 24] are specifically
designed for fast online compression of data. Lindstrom and Isenberg [24] introduced a method for
compressing floating-point values of 2D and 3D grids that functions by predicting each floating
point value in the grid and recording the difference between the predictive estimator and the actual
data value. They also provide the option of discarding least significant bits of the delta and making
the compression lossy. However, the number of significant precision bits that can be saved is limited
to 16, 32, 48, or 64 for double precision data. When applied to a one-dimensional data from GTS
simulation, storing only 16 significant bits provided a compression of 82%, which is comparable
with ISABELA’s, but more than 75% of the total points had per point relative error of over 1%. By
storing 32 bits, the per point relative error was found to be within 0.1%, but the compression rate
achieved .58.2%/ was 13% less than ISABELA’s. Moreover, like other lossless algorithms, location
specific decoding is not possible.

Other lossy compression techniques use variants of transform-based reduction, followed by some
form of data quantization to compress the data sets that are fed as input to visualization tools. How-
ever, visualization community focuses on providing multiresolution view-dependent level of detail.
The error rate tolerated with lossy compression techniques on data used for visualization tend to be
higher when compared with the data used for analysis. Hence, very little work exists that accurately
compresses non-image or seemingly random data, even outside the scientific community. In fact, to
the best of our knowledge, ISABELA is the first approach to use B-spline fitting in the context of
reduction for data that is essentially random.

7. CONCLUSION

This paper describes ISABELA, an effective in situ method designed to compress spatio-temporal
scientific data and perform analytical operations over the compressed data. The ISABELA com-
pression starts by partitioning the data into small windows and applying a sorting pre-conditioner,
which significantly improves the efficacy of cubic B-spline spatial compression. It also exploits
temporal patterns prevalent in scientific datasets, applying a � encoding of the higher-order differ-
ences in index values to further reduce index storage requirements. The indexing scheme built on
top of the ISABELA data presents a storage-efficient format that accelerates query processing on
heterogeneous architectures.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:524–540
DOI: 10.1002/cpe



ISABELA FOR EFFECTIVE IN-SITU REDUCTION OF SPATIO-TEMPORAL DATA 539

On 20 scientific datasets, ISABELA provides excellent approximation and reduction. Not only
does it consistently outperforms wavelet transform technique, but also delivers better performance,
in terms of both compression ratio and accuracy. By capturing the relative per point errors and
applying error quantization, ISABELA provides over 75% compression on data from XGC, GTS
and Flash simulation applications, while ensuring 99% accuracy on almost all values. Furthermore,
several analytical operations, such as correlation and query-driven processing benefit from quick
approximate solutions that can be obtained by operating over ISABELA-compressed data. The
storage-efficient solution over error-bounded compressed data, leads to accurate results on ana-
lytical operations over XGC and GTS simulation data sets (> 99% at � D 0.1%) when compared
with the original data. The ISABELA-compressed data and its parallel storage framework are thus
ideally suited for scientific data analytics and visualization routines.
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