Compressing the Incompressible with ISABELA.:
In-situ Reduction of Spatio-Temporal Data

Sriram Lakshminarasimhan'2, Neil Shah®, Stephane Ethier?, Scott Klasky?,
Rob Latham®*, Rob Ross* and Nagiza F. Samatoval:?:

! North Carolina State University, Raleigh, NC 27695, USA
2 QOak Ridge National Laboratory, Oak Ridge, TN 37830, USA
3 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA
4 Argonne National Laboratory, Argonne, IL 60439, USA
5 Corresponding author: samatova@csc.ncsu.edu

Abstract. Modern large-scale scientific simulations running on HPC
systems generate data in the order of terabytes during a single run.
To lessen the I/O load during a simulation run, scientists are forced to
capture data infrequently, thereby making data collection an inherently
lossy process. Yet, lossless compression techniques are hardly suitable
for scientific data due to its inherently random nature; for the applica-
tions used here, they offer less than 10% compression rate. They also
impose significant overhead during decompression, making them unsuit-
able for data analysis and visualization that require repeated data access.

To address this problem, we propose an effective method for In-situ Sort-
And-B-spline Error-bounded Lossy Abatement (ISABELA) of scien-
tific data that is widely regarded as effectively incompressible. With IS-
ABELA, we apply a preconditioner to seemingly random and noisy data
along spatial resolution to achieve an accurate fitting model that guaran-
tees a > 0.99 correlation with the original data. We further take advan-
tage of temporal patterns in scientific data to compress data by ~ 85%,
while introducing only a negligible overhead on simulations in terms of
runtime. ISABELA significantly outperforms existing lossy compres-
sion methods, such as Wavelet compression. Moreover, besides being a
communication-free and scalable compression technique, ISABELA is
an inherently local decompression method, namely it does not decode
the entire data, making it attractive for random access.

Keywords: Lossy Compression; B-spline; In-situ Processing;
Data-intensive Application; High Performance Computing.

1 Introduction

Spatio-temporal data produced by large-scale scientific simulations easily reaches
terabytes per run. Such data volume poses an I/O bottleneck—both while writ-
ing the data into the storage system during simulation and while reading the
data back during analysis and visualization. To alleviate this bottleneck, scien-
tists have to resort to subsampling, such as capturing the data every s timestep.

This process leads to an inherently lossy data reduction.

In-situ data processing—or processing the data in-tandem with the simula-
tion by utilizing either the same compute nodes or the staging nodes—is emerg-
ing as a promising approach to address the I/O bottleneck [12]. To complement
existing approaches, we propose an effective method for In-situ Sort-And-B-
spline Error-bounded Lossy Abatement (ISABELA) of scientific data.

ISABELA is particularly designed for compressing spatio-temporal scien-
tific data that is characterized as being inherently noisy and random-like, and
thus commonly believed to be uncompressible [16]. In fact, any lossless compres-
sion technique [3,13] is capable of reducing such data by no more than a 10% of
its original size, besides being computationally intensive and, therefore, hardly
suitable for in-situ processing (see Section 3).

The intuition behind ISABELA stems from the following three observations.
First, while being almost random and noisy in its natural form—when sorted—
scientific data exhibits a very strong signal-to-noise ratio due to its monotonic
and smooth behavior in its sorted form. Second, prior work done in curve fitting
[7,17] have shown that monotone curve fitting, such as monotone B-splines, can
offer some attractive features for data reduction, including, but not limited to,
their goodness of fit with significantly fewer coefficients to store. Finally, the
monotonicity property of the sorted data gets preserved in most of its positions
with respect to adjacent time steps. Hence, this property of monotonic inheri-
tance across temporal resolution offers yet another venue for improvement of the
overall data compression ratio.

While intuitively simple, ISABELA has addressed a number of technical
challenges imposed by end-user’s requirements. One of the most important fac-
tors for the user’s adoption of any lossy data reduction technology is the as-
surance that the user-acceptable error-bounds are respected. Since curve fitting
accuracy is often data-dependent, ISABELA must be robust in its approxi-
mation. While curve fitting operations are traditionally time consuming, per-
forming the compression in-situ, mandates ISABELA to be fast. Finally, while
data sorting—as a pre-conditioner for data reduction—is “a blessing,” it is “a
curse” at the same time; reordering the data requires keeping track of the new
position indices to associate the decoded data with its original ordering. While
management of spline coefficients could be viewed as a light-weight task, the
heavy-weight index management forces ISABELA to make some non-trivial
decisions between the data compression rates and the data accuracy.

2 A Motivating Example

Much of the work for in-situ data reduction in this paper stems from a Gyroki-
netic Tokamak Simulation (GTS) [15] for studying plasma micro-turbulence in
the core of magnetically confined fusion plasmas of toroidal devices in nuclear
reactors. On current petaflop systems, such as NCCS/ORNL Jaguarpf, the GTS
code, utilizing ADIOS [11] for its intensive I/O, has demonstrated weak scaling
for up to 65,536 cores on the 8-core per node configuration.

The entire GTS data set can be broadly divided into: (1) checkpoint data
to restart the simulation in case of an execution failure (C&R); (2) analysis (A)
data, such as density and potential fluctuations, for performing various post-

processing physics analyses, and (3) diagnostics data used, for example, for code
validation and verification (V&V) (see Table 1).

Table 1: Summary of GTS output data by different categories.
ICategoryH Write Frequency [Read Access[Size/Write[Total Size‘
C&R Every 1-2 hours |Once or never| A few TBs ~TBs

A Every 10°" time step| Many times | A few GBs ~TBs
V&V | Every 2" time step | A few times | A few MBs | ~GBs

Unlike C&R data that requires lossless compression, analysis (A) data is
inherently lossy, and as such, it can tolerate some error-bounded loss in its accu-
racy. What is more important is that it is the analysis data that is being accessed
many times by different scientists using various analysis and visualization tools
or Matlab physics analysis codes. Therefore, aggressive data compression that
could enable interactive analytical data exploration is of paramount concern, and
is, therefore, the main focus of ISABELA. For illustrative purposes, throughout
the paper, we will use temporal snapshots of the GTS analysis data consisting of
one-dimensional 64-bit double precision floating point arrays of 172,111 values
each for Potential and Density fluctuations.

3 Problem Statement

The inherent complexity of scientific spatio-temporal data drastically limits the
applicability of both lossless and lossy data compression techniques and presents
a number of challenges for new method development. Such data not only con-
sists of floating-point values, but also exhibits randomness without any distinct
repetitive bit and/or byte patterns (also known as high entropy data, and hence,
uncompressible [5,14]). Thus, applying standard lossless compression methods
does not result in an appreciable data reduction.

Table 2 illustrates the compression rates achieved and the time required to
compress and decode 12,836KB of GTS analysis data by state-of-the-art meth-
ods. In addition, scientific data often exhibits a large degree of fluctuations in
values across even directly adjacent locations in the array. These fluctuations
render lossy multi-resolution compression approaches like Wavelets [6] ineffec-
tive.

The compression ratio CRps(D) of a compression method M for data D of
size | D| reduced to size |Dyy| is defined by Eq. 1:

D] = [D]

x 100%. (1)

The accuracy of lossy encoding techniques is measured using Pearson’s cor-
relation coefficient (p) and Normalized Root Mean Square Error between an

N —dimensional original data vector D = (dy,ds,...,dy—1) and decompressed
data vector D' = (dj,dy,...,d_;) defined by Eq. 2:

/ ot (di — dl)?
NSy (p) - PHSERDD) mibo) Emm(;),)

Table 2: Performance of examplar lossless and lossy data compression methods.

lMetric “FPC[LZMA[ZIP[BZZ“ISABELA[Wavelets[B—splines‘
Lossless? Yes | Yes | Yes| Yes No No No
CRy (%) 3.12| 2.72 |1.13|1.11|| 81.44* 22.51%* 0*
Compression (sec.) 0.58 | 7.01 [1.03]3.96 0.93 0.62 0.78
Decompression (sec.)|| 0.56 | 1.38 [0.49|1.18 1.05 0.58 0.82

*C R achieved by lossy models for 0.99 correlation and 0.01 NRMSE fixed accuracy. All runs are
performed on an Intel Core 2 Duo 2.2 GHz processor with 4 GB RAM, openSUSE Linux v11.3.

4 Theory & Methodology

Existing multi-resolution compression methods often work well on image data or
time-varying signal data. For scientific data-intensive simulations, however, data
compression across the temporal resolution requires data for many timesteps be
buffered in memory that is, obviously, not a viable option. Applying lossy com-
pression techniques on this data across the spatial resolution requires a significant
tradeoff between the compression ratio and the accuracy. Hence, to extract the
best results out of the existing approximation techniques, a transformation of
this data layout becomes necessary.

| X 10" Original Data 1 X 10" Decompressed Original
(R) ©
0.5
0 e 3
0.5
-1 -1
0 50 100 0 50 100
41X 10" Sorted Data 41X 10" Decompressed Sorted
(B) ® é i
0.5 0.5 AR A
1 10y MY
i ."ui--’i:".": R
0 o Vi 1 !
by VUV e Yy
l,\‘“, I ! ['
-0.5 050 Y ¥ {
-1 -1
0 50 100 ()] 50 100

Fig.1: A slice of GTS Potential: (A) original; (B) sorted; (C) decoded after
B-splines fitting to original; and (D) decoded after B—splines fitting to sorted.

4.1 Sorting-based Data Transformation

Sorting changes the data distribution in the spatial domain, from a highly ir-
regular signal (Fig. 1, A) to a smooth and monotonous curve (Fig. 1, B). The
rationale behind sorting—as a pre-conditioner for a compression method—is
that fitting on a monotonic curve can provide a model that is more accurate
than the one on unordered and randomly distributed data. Figure 1 illustrates
the significant contrast in how closely (D) or poorly (C) the decompressed data
approximates the original data when the B—splines curve fitting [2] operates on
sorted versus unsorted data, respectively.

4.2 Cubic B—splines Fitting

Sorting the data in an increasing order provides a sequence of values whose rate
of change is guaranteed to be the slowest. Although this sequence resembles a
smooth curve, performing curve fitting using non-linear polynomial interpolation
becomes difficult for complex shape curves. Computing interpolation constants
for higher-order polynomials in order to fit these complex curves is computa-
tionally intensive for in-situ processing.

A more effective technique is by using B—splines curve fitting. A B—splines
curve is a sequence of piecewise lower order parametric curves joined together via
knots. Cubic B—splines are composed of polynomial functions of degree d = 3,
which have faster interpolation time and produce “smooth” curves (i.e., second-
order differentiable) at the knot locations. The shape of the B—splines curve
is determined by a knot sequence that describes the span of the piecewise seg-
ments, and a set of basis functions that influences the segments of the curve.
Because of this property splines can control the local shape of the curve without
affecting the shape of the curve globally. This also implies that both curve fit-
ting and interpolation are efficient operations and can provide location-specific
data decoding without decompressing all the data. While sorting rearranges the
points, location-specific decoding is still possible by performing an additional
single level translation of data location from the original to the sorted vector,
and then retrieving the interpolated value on the sorted B—spline curve.

4.3 Maximizing Compression Ratio via Window Splitting

In this section, we look at approaches to maximizing the compression ratio, while
maintaining an accurate approximation model. Let us assume that the original
data D is a vector of size N, namely D = (dy,d,...,dny—_1). This way we can
associate a value d; with each index value i € T = {0,1,..., N — 1}. Let us also
assume that each vector element, d; € R, is stored as a 64-bit double-precision
value. Therefore, storing the original data requires |D| = N x 64 bits.
Assuming that D is a discrete approximation of some curve, its B—splines
interpolation Dp requires storing only B—splines constants—the knot vector
and the basis coefficients—in order to reconstruct the curve. Let C' denote the

number of such 64-bit double-precision constants. Then storing the compressed
data after B-splines curve fitting requires |Dp| = C x 64 bits.

The random-like nature of D (see Fig. 1, (A)) requires C' ~ N to provide
accurate lossy compression, and hence, leads to a poor compression rate (see
Table 2, last column). However, applying B-splines interpolation after sorting
D requires only a few constants, C = O(1) << N, in order to provide high
decompression accuracy (see Fig. 1, (D)).

While significantly reducing the number of B—splines constants C', sorting
D will reorder the vector elements via some permutation 7 of its indices, namely
I 5 I, = {i1,i,...,in}, such that di; < dj,,,,Vij € Ir. As a result, we need
to keep track of the new index I so that we could associate the decompressed
sorted vector D, back to the original vector D by using its correct index I. Since
each index value i; requires loga N bits, the total storage requirement for I is
thus |I;| = N X logaN bits. Therefore, the vector length N is the only factor
that determines the storage requirements for the index I.

One way to optimize the overall compression ratio, C RisagLa, is to first
split the entire vector D into fixed-sized windows of size Wy, or D = JDF,
DiNnDI =0, I* = {(k—)Wy, (k—1)Wo+1,....kWo}, i,5,k € 1, Ny, i # j,

and Ny = Wio . Then, the B—splines interpolation is applied to each window

DF separately.
With this strategy, ISABELA’s storage requirement for the compressed data
is defined by Eq. 3:

Nw
|DisaBELA| = Z(|D5§\ +1I5D), 3)
k=1
= Nw X (C X 64 + Wy x lOggWO)

Substituting Eq. 3 into Eq. 1 and simplifying the resulting equation, we
obtain the following compression ratio for ISABELA defined by Eq. 4:
CRISABELA(D) = (1 — 10926# — Wgo) x 100% (4)
From Eq. 4, we can analytically deduce the trade-off between the window size
Wy and the number of B—splines constants C' that give the best compression
ratio. For example, for Wy > 65,536, the size of the index alone would consume
more than 25% of the original data. We found that C' = 30 and Wy = 1024 allows
ISABELA to achieve both > 0.99 correlation and < 0.05 NRMSE between the
original and decompressed GTS data. Also, fixing W, = 1024 balances the cost of
storing both the index and the fitting coefficients giving an overall compression
rate of 81.4% per time step.

4.4 Error Quantization for Guaranteed Point-by-point Accuracy

The above sorting-based curve fitting model ensures accurate approximation
only on a per window basis and not on a per point basis. As a result, in certain

locations, the B—splines estimated data deviates from the actual by a margin
exceeding a defined tolerance. For example, almost 95% of the approximated
GTS Potential values average a 2% relative error, where the percentage of the
relative error (€) at each index i between D = (dg, dy, ...,dn—1) and Disapgpra =

(dy,di, ..., dy_y) is defined as ¢; = d"d;id; x 100%. While the number of such
location points is reasonably low due to accurate fitting achieved by B—splines
on monotonic data, ISABELA guarantees that a user-specified point-by-point
error is respected by utilizing an error quantization strategy.

Storing relative errors between estimated and actual values enables us to
reconstruct the data with high accuracy. Quantization of these errors into 32-bit
integers results in a large degree of repetition, where majority of the values lie
between [-2, 2]. These integer values lend themselves to high compression rates
(75% — 90%) with standard lossless compression libraries. These compressed
relative errors are stored along with the index during encoding. Upon decoding,
applying these relative errors ensures decompressed values to be within a user-
defined threshold 7. for per point relative error.

4.5 Exploiting A—encoding for Temporal Index Compression

Original Data Sorted Data
o

Wi —

i}f
!
|

i
i
i
i
Time Step 1 |
i
Index --

»-

n AA
T

ime Step. f
Time Step 2 |
Fig. 2: Illustration of A—encoding of the index across temporal resolution.

To a large extent, the ordering of the sorted data values is similar between
adjacent timesteps, i.e., the monotonicity property of the data extends to index
integer values. Hence, we apply a differential encoding scheme to the index vector
I before compressing the index using standard lossless compression libraries.
[Note that subsequent scheme is applied to each individual data window D™.]

Suppose that at timestep tg, we first build the index I,(fy) consisting of
no redundant values, essentially, incompressible. Hence, this index is stored as
is. But, at the next timestep to + 1, the difference in index values Al ; =
I (to + 1) — I;(tg) is small (see Fig. 2) due to monotonicity of the original data
values D™ and, hence, the sorted values across adjacent timesteps.

Thus, instead of storing the index values at each timestep, we store the index
values at tg, denoted as the reference index, along with the compressed pairwise
index differences AI; between adjacent timesteps. But, in order to recover the
data at time tg + 0t, we must read in both the reference index I(tg) and all

the first-order differences Al between adjacent timesteps in the time window
(to, to+0t). Therefore, the higher value of 6t will adversely affect reading time. To
address this problem, we instead store and compress a higher-order difference,
Al = I (to+j) — Ix(to), where j € (1,4t), for the growing value of §t until the
size of the compressed index crosses a user-defined threshold. Once the threshold
is crossed, the index for the current timestep is stored as is, and is considered as
the new reference index.

5 Results

Evaluation of a lossy compression algorithm primarily depends on the accuracy
of the fitting model and the compression ratio (CR) achieved. As this compres-
sion is performed in-situ, analysis of the time taken to perform the compression
assumes significance as well. Here, we evaluate ISABELA with emphasis on the
aforementioned factors, using normalized root mean standard error (NRM SE)
and Pearson correlation (p) between the original and decompressed data as ac-
curacy metrics. [Note that achieving NRMSE ~ 0, p ~ 1, and CR ~ 100%
would indicate excellent performance.]

12 1.05

—Wavelets--B-Splines—ISABELA Non-Linear —Linear
5 5
s s 1
%]
308]
.S < 0.95
S 06 8
. &
5 " £ o9
© 0.4 -\ I v/ K M o
g " g™ f R (-
2] [T H % 085
802 | i] ; : 5
% ' i ' H &
! '
0 0.8
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Window Id Window Id
(a) (b)

Fig.3: Accuracy (p): (a) Per window correlation for Wavelets, B—splines, and
ISABELA with fixed CR = 81% for GTS Density. (b) Per window correlation
for GTS linear and non-linear stage Potential decompressed by ISABELA.

5.1 Per Window Accuracy

In this section, we compare the Pearson correlation (p) between the original and
decompressed data using Wavelets and B-Splines on original data and using IS-
ABELA. The following parameters are fixed in this experiment: CR = 81% for
Density, Wy = 1024, Cp_spiine = 150, and Cisapera = 30. Wavelet coefficients
are thresholded to achieve the same compression rate. Figure 3(a) illustrates that
ISABELA performs exceptionally well even for much smaller C' values due to
the monotonic nature of the sorted data. In fact, p > 0.99 for almost all the win-
dows. However, both Wavelets and B—splines exhibit a large degree of variation
and poor accuracy across different windows. This translates to NRMSE values

that are one-to-two orders of magnitude larger than the average 0.005 NRMSE
value produced by ISABELA.

ISABELA performs exceptionally well on data from the linear stages of the
GTS simulation (first few thousand timesteps), as shown in Fig. 3(b). Yet, the
performance for the non-linear stages (timestep ~ 10, 000), where the simulation
is characterised by a large degree of turbulence, is of particular importance to
scientists. Figure 3(b), with intentionally magnified correlation values, shows
that accuracy for the non-linear stages across windows drops indeed. Unlike
Wavelets (Fig. 3(a)), however, this correlation does not drop below 0.92.

mLinear @Non-Linear 8 OFlash - Velocity mGTS - Potential

68.7
677 67.5 ﬂ2
0.5 1 2

0.1

®
o
~
3
©
®
o

~
(&
N
w

~

ol

~
o

[+))
a

Overall compression ratio (CR)
3
Compression Ratio (CR)
(2]
(5

@
o

3 4 5 12345678 910111213141516171819
Maximum relative error (%) at each point Timestep Id
(a) (b)
Fig.4: Compression ratio (CR) performance: (a) For various per point relative
error thresholds (7.) in GTS Potential during linear and non-linear stages of
the simulation. (b) For various timesteps with 7. = 1% at each point (for GTS
Potential: t; = 1,000, At = 1, 500; for Velocity in Flash: ¢; = 3,000, At = 3, 500.

o
o

5.2 Trade-off between Compression and Per Point Accuracy

To alleviate the aforementioned problem, we apply error quantization, as de-
scribed in Sec. 4.4. In both linear and non-linear stages of GTS simulation, the
compression ratios are similar when the per point relative error (7.) is fixed (see
Fig. 4(a)). This is because the relative error in consecutive locations for the
sorted data tends to be similar. This property lends well to encoding schemes.
Thus, even when the error tends to be higher in the non-linear stage, compared
with the linear stage, the compression rates are highly similar. For 7. = 0.1% at
each point, the CR lowers to an around 67.6%. This implies that by capturing
99.9% of the original values, the data from the simulation is reduced to less than
one-third of its total size.

Figure 4(b) shows the compression ratio (with 7. = 1%) over the entire sim-
ulation run using the GTS fusion simulation and Flash astrophysics simulation
codes. For GTS Potential data, the compression ratio remains almost the same
across all stages of the simulation. With Flash, after error quantization, most
relative errors are 0’s. Compressing these values results in negligible storage
overhead, and hence C'R remains at 80% for the majority of timesteps.

10

5.3 Effect of A—encoding on Index Compression

In this section, we show that compressing along the time dimension further
improves ISABELA’s overall compression of spatio-temporal scientific datasets
by up to 2%—5%. Table 3 show the compression rates achieved for different
orders of Al ;,j = 1,2,3. While increasing W, improves spatial compression
to a certain extent, it severely diminishes the reduction of the index along the
temporal resolution. This is due to the fact that with larger windows and a
larger 0t between timesteps, the difference in index values lacks the repetitiveness
necessary to be compressed well by standard lossless compression libraries.

Table 3: Impact of A—encoding on C'R for Potential (Density).
Wo Without Afencoding AI+1 AI+2 AI+3
512 80.08 (80.08) 81.83 (34.14) | 81.87 (85.09) | 81.68 (85.36)
1024]] 81.44 (81.44) |83.14 (85.65)|83.21 (86.57)|82.98 (86.76)
2,048 8134 (31.34) 83.03 (85.56) | 83.07 (86.44) | 82.88 (36.66)
4,096 80.51 (30.51) 82.14 (84.64) | 82.21 (85.51) | 82.03 (85.76)
8,192 79.32 (79.32) 80.99 (83.38) | 81.04 (84.24) | 80.83 (84.46)

5.4 Compression Time

The overhead induced on the runtime of the simulation due to in-situ data
compression is the net sum of the times taken to sort D, build I, and perform
cubic B—spline fitting. However, for a fixed window size W), sorting and building
the index is computationally less expensive compared to B—spline fitting. When
executed in serial, ISABELA compresses data at ~12 MB/s rate, the same
as gzip, compression level 6, as shown in Table 2. Within the context of the
running simulation, each core is expected to generate around 10 MB of data every
10 seconds that can be reduced to =2 MB in 0.83 seconds using ISABELA.
Additionaly, to further reduce the impact of in-situ compression on the main
computation, ISABELA can be executed at the I/O nodes rather than at the
compute nodes [1,18].

In the case of compression, parallelization is achieved by compressing each
window independently. However, a more fine-grain parallelization can be applied
to decompression, as each point in the B—spline curve can be reconstructed
independently. To evaluate the scalability and parallelization characteristics of
ISABELA decompression, we evaluate the time taken for decompression against
serial, OpenMP and GPU-based implementations in a single node environment.
Figure 5 shows the performance of decompression of all three implementations.
The serial implementation is faster when decompressing less than 1,000 points,
but as the number of decompressed points increases, both GPU and OpenMP
versions offer the advantage in terms of computational time. This is especially
true with a GPU-based implementation, which is better suited for fine-grain
parallel computation.

11

Time (sec.)

Number of Point:

Fig.5: Computational time for serial, CPU-parallelized, and GPU-parallelized
versions of ISABELA’s B—spline reconstruction part. 8 OpenMP threads were
used in this particular plot, corresponding to two quad core Intel Xeon X5355
Processors.

5.5 Performance for Fixed Compression

In this section, we evaluate the performance of ISABELA and Wavetlets
on 13 public scientific datasets (from numerical simulations, observations, and
parallel messages) [3] for the fixed CR = 81%. We compare the averages of
po and NRMSE, of ISABELA and Wavelets across 400 windows (see Table
4). Out of the 13 datasets, eleven (three) datasets exhibit p, = 0.98 with
ISABELA (Wavelets). The NRMSE, values for Wavelets are consistently
an order of magnitude higher than for ISABELA. Wavelets outperform IS-
ABELA on obs_spitzer consisting of a large number of piecewise linear seg-
ments for most of its windows. Cubic B—splines do not estimate well when
segments are linear.

6 Related Work

Lossy compression methods based spline fitting or Wavelets have been primarily
used in the field of visualization, geometric modeling, and signal processing.
Very few studies applied such techniques when neither spatial nor temporal
correlation of data can be directly exploited. Chou et al. [4] and Lee et al. [9]
explored spline fitting for random data to optimize the location of control points
to reduce approximation error. In contrast, we aim to transform the data to take
advantage of the accuracy and easily-expressible qualities of splines.

Lossless compression techniques [3,8,10,13] have been recently applied to
floating point data. Unlike most lossless compression algorithms, the techniques
presented in [3, 10] are specifically designed for fast online compression of data.
Lindstrom and Isenberg [10] introduced a method for compressing floating-point
values of 2D and 3D grids that functions by predicting each floating point value
in the grid and recording the difference between the predictive estimator and the

12

Table 4: ISABELA vs. Wavelets for fixed CR = 81% and Wy = 1,024.

Pa NRMSE,
Wavelets ISABELA Wavelets ISABELA
msg_sppm 0.400 £ 0.287 |0.982 £ 0.017| 0.203 £ 0.142 |0.051 + 0.015
msg_bt 0.754 £+ 0.371 |0.981 4+ 0.054| 0.112 + 0.151 {0.038 £ 0.024
msg_lu 0.079 £ 0.187 |0.985 4+ 0.031|| 0.422 + 0.103 [0.048 £+ 0.015
msg_sp 0.392 £ 0.440 |0.967 £ 0.051| 0.307 £ 0.243 |0.064 + 0.033
msg_sweep3d|| 0.952 + 0.070 [0.998 £+ 0.006|| 0.075 £+ 0.036 |0.004 + 0.003
num_brain 0.994 + 0.008| 0.983 4+ 0.028 ||0.010 + 0.011| 0.011 £ 0.005
num_comet || 0.988 £ 0.018 [0.994 + 0.025(| 0.020 + 0.020 {0.010 + 0.006
num-_control || 0.614 £ 0.219 |0.993 + 0.017| 0.083 £+ 0.037 {0.009 + 0.002
num_plasma || 0.605 + 0.062 [0.994 + 0.004|| 0.277 4+ 0.038 |0.033 + 0.004
obs_error 0.278 £ 0.203 |0.994 £ 0.004| 0.303 £ 0.091 |0.024 + 0.009
obs_info 0.717 £ 0.136 |0.993 4+ 0.006(| 0.181 + 0.078 [0.026 £+ 0.016
obs_spitzer 0.992 + 0.001]| 0.742 4+ 0.004 {[{0.005 4+ 0.000| 0.030 £ 0.000
obs_temp 0.611 & 0.114 |0.994 £ 0.011}| 0.096 £ 0.025 |{0.009 + 0.003

actual data value. They also provide the option of discarding least significant bits
of the delta and making the compresion lossy. However, the number of significant
precision bits that can be saved is limited to 16, 32, 48, or 64 for double precision
data. When applied to a one-dimensional data from GTS simulation, storing
only 16 significant bits provided a compression of 82%, which is comparable
with ISABELA’s, but more than 75% of points had per-point relative error of
over 1%. By storing 32 bits, the per-point relative error was found to be within
0.1%, but the compression rate achieved (58.2%) was 13% less than ISABELA’s.
Morever, like other lossless algorithms, location- specific decoding is not possible.
Most lossy compression techniques either use Wavelets or some form of data
quantization to compress the data sets that are fed as input to visualization
tools. However, visualization community focuses on providing multi-resolution
view-dependent level of detail. The error rate tolerated with lossy compression
techniques on data used for visualization tend to be higher when compared to the
data used for analysis. Hence, very little work exists that accurately compresses
non-image or seemingly random data, even outside the scientific community.
In fact, to the best of our knowledge, ISABELA is the first approach to use
B—spline fitting in the context of reduction for data that is essentially random.

7 Summary

This paper describes ISABELA, an effective in-situ method designed to com-
press spatio-temporal scientific data. ISABELA compresses data over both
the spatial and temporal resolutions. For the former, it essentially applies data
sorting, as a pre-conditioner, that significantly improves the efficacy of cubic
B-spline spatial compression. For the latter, it uses A—encoding of the higher-
order differences in index values to further reduce index storage requirements.

13

By capturing the relative per point errors and applying error quantization, IS-
ABELA provides over 75% compression on data from GTS, while ensuring
99% accuracy on all values. On 13 other scientific datasets ISABELA provides
excellent approximation and reduction, consistently outperforming extensively
used Wavelets compression.

Acknowledgements

This work was supported in part by the U.S. Department of Energy, Office of Science
(SciDAC SDM Center, DE-AC02-06CH11357, DE-FC02-10ER26002/DE-SC0004935,
DE-FOA-0000256, DE-FOA-0000257) and the U.S. National Science Foundation (CCF-
1029711 (Expeditions in Computing)). Oak Ridge National Laboratory is managed by
UT-Battelle for the LLC U.S. D.O.E. under contract no. DEAC05-000R22725.

References

1. H. Abbeasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan, and M. Wolf. Extending
I/0 through high performance data services. In Cluster Computing, Austin, TX,
September 2007. IEEE International.

2. C. De Boor. A Practical Guide to Splines. New York, Springer-Verlag, 1978.

3. M. Burtscher and P. Ratanaworabhan. FPC: A high-speed compressor for double-
precision floating-point data, 2009. http://www.csl.cornell.edu/~burtscher/
research/FPC/.

4. J. Chou and L. Piegl. Data reduction using cubic rational B-splines. IEEE Comput.
Graph. Appl., 12:60-68, May 1992.

5. T.M. Cover and J. Thomas. Elements of information theory. Wiley-Interscience,
New York, NY, USA, 1991.

6. M.W. Frazier. An introduction to Wavelets through linear algebra. Springer-Verlag,
1999.

7. X. He and P. Shi. Monotone B-spline smoothing. Journal of the American Statis-
tical Association, 93(442):pp. 643-650, 1998.

8. M. Isenburg, P. Lindstrom, and J. Snoeyink. Lossless compression of predicted
floating-point geometry. Computer-Aided Design, 37(8):869 — 877, 2005. CAD 04
Special Issue: Modelling and Geometry Representations for CAD.

9. S. Lee, G. Wolberg, and S.Y. Shin. Scattered data interpolation with multilevel
B-splines. IEEE Trans. on Viz. and Comp. Graphics, 3(3):228 —244, 1997.

10. P. Lindstrom and M. Isenburg. Fast and efficient compression of floating-point
data. IEEE Trans. on Viz. and Comp. Graphics, 12(5):1245 —1250, 2006.

11. J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, metadata rich 10
methods for portable high performance 10. In IPDPS’09, Rome, Italy, May 2009.

12. K. Ma, C. Wang, H. Yu, and A. Tikhonova. In-situ processing and visualization for
ultrascale simulations. Journal of Physics: Conference Series, 78(1):012043, 2007.

13. P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast lossless compression of scientific
floating-point data. In Proc. of the DCC, 2006.

14. K. Sayood. Introduction to data compression. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1996.

15. W. X. Wang and et al. Gyro-kinetic simulation of global turbulent transport
properties in Tokamak experiments. Physics of Plasmas, 13(9):092505, 2006.

14

16. T.A. Welch. A technique for high-performance data compression. Computer, 17:8—
19, June 1984.

17. S. Wold. Spline functions in data analysis. American Statistical Association and
American Society for Quality, 16(1):1 — 11, 1974.

18. F. Zheng and et al. PreDatA—preparatory data analytics on peta-scale machines.
In IPDPS, Atlanta, GA, April 2010.

