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Abstract. The controlled production of thermo-nuclear fusion energy is critical for providing 
an alternative, environmentally friendly, and renewable energy source on our planet. The 
technical challenge is to stabilize the dynamic turbulent flow of hot plasma in magnetic fields 
in a fusion energy reactor. More specifically, the issue is how to control fusion plasma 
instabilities, or turbulence–an analogy comparable to learning how to “Hold the Sun.” To 
address this issue, we create computational and mathematical methodology to discover and 
track–both in space and time–the intricate patterns of dynamic plasma turbulence during 
fusion energy production in a reactor simulated on a supercomputer. In doing so, we establish 
several aims.  First, from extreme scale data, we automatically discover the structure of 
fronts, or patterns where the turbulence starts, and analyze their dynamic behaviour including 
speed and direction of front propagation.  To do this, we create an algorithm for automatic 
turbulent front detection, track and quantify front propagation in space and time, and assess 
the predictability of the proposed methodology. Comprehensively, this process can 
potentially predict the structure, dynamics, and function of fusion plasma turbulence.  It could 
also enable similar analyses required in other fields, such as astrophysics and combustion. 

1. Introduction 
 Few would argue that fusion energy has been the Holy Grail of renewable energy 
efforts.  The success of this endeavor will have vast environmental, geopolitical, and 
economic impacts.  The grand challenge is to produce more energy through a fusion reaction 
than that required to initiate the process in a reactor.  A key bottleneck is the turbulence, or 
unstable motion, of the fusion plasma.  Turbulence influences the degree of energy lost by 
plasma during the fusion process; therefore, controlling the turbulence is critical to viable 
energy production. Predicting plasma performance in a fusion reactor, such as the one aimed 
by the international ITER project [1] is a non-trivial task. Understanding turbulence 
dynamics is the key for this capability. A promising approach uses numerical simulations of 
plasma’s dynamic behavior. The composite energy signal observed via these simulations is 
distributed in both space and time, or spatio-temporally.  
 Until recently, plasma turbulence has been considered as a local phenomenon, in which 
turbulence only occurs in a certain area for a certain time period.  The emerging 
supercomputing simulations, such as XGC1, at extreme scale–with trillions of particles in 3D 
space and thousands of time steps–have revealed non-local and non-linear nature of 
turbulence propagation in the reactor with a toroidal magnetic field for confining plasma [2].   



 Discovery of dynamic turbulent patterns and trends from the data produced by a 
computer-simulated fusion reaction offers a potential to reveal ways to control the 
turbulence.  Yet, it presents a challenge: how to effectively and efficiently analyze the 
massive amounts of data, which is inherently complex, noisy, and high-dimensional.  To 
address this challenge, we create a 
supercomputing analytical methodology to 
discover, track, and statistically quantify–
both in space and time–the intricate 
patterns of dynamic plasma turbulence 
fronts from extreme-scale fusion 
simulation data.   
     
2. Problem statement 

Informally, turbulent fronts are 
patterns where turbulence starts (Figure 
1.A). Multiple fronts can propagate both in 
space and time, or spatio-temporally.  This portrays the non-locality and complexity of 
turbulence, namely the impact that turbulence in one region can have in another region. For 
example, fronts may propagate inward, from larger to smaller toroidal radii, or outward, 
from smaller to larger toroidal radii (Figure 1.B).  

Figure 1. (A) A turbulent front illustration. (B) 
Spatio-temporal propagation of multiple fronts. 

Mathematically, fronts correspond to the points of the maximum positive curvature 
c(r,t) of function y(r,t) (Figure 2.A). For example, y(r,t) may correspond to , the 
square of electrical potential fluctuation by turbulence. From a plasma physics perspective, 
propagation of turbulent fronts along the radial (r) spatial dimension over time in a toroidal 
fusion reactor is of primary interest. For each time step, t, spatial (radial, rfront) coordinates, 
where  attains its maximal positive curvature value are being sought: 
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Calculation of the curvature function from numerical simulation output data may produce 
noisy patterns that challenge finding the maxima (Figure 2.B). Likewise, visual front 
assessment is sensitive to 
the underlying visual color 
map. Also, front selection 
based on the specified 
threshold value requires 
domain knowledge and 
prevents unsupervised 
discovery. Thus, due to 
inherent complexity of 
simulation output data, 
automatic detection of 
turbulent fronts from the 
data calls for a statistically 
robust and predictive method. 

Figure 2. (A) Curvature values for different spatio-temporal points. 
(B) Noisy patterns of curvature values challenge finding maxima.

 



3. End-to-end data analysis pipeline 
 We introduce an end-to-end data analysis pipeline for detection and tracking, both in 
space and time, of turbulent fronts (Figure 3). Due to data noise, complexity, and size, the 
pipeline involves several critical 
steps, including data pre-
processing, front detection, front 
tracking, and efficient pipeline 
execution using our parallel R [7] 
software on a supercomputer. We 
discovered an intelligent strategy 
for amplifying the signals and for 
reducing the noise. In a nutshell, 
our strategy rests on the following 
observation. For a fixed time-step, 

, consider the approximation of 
  with line segments in a 

small    spatial 
region around the point of interest, 

0t
),( 0

2 trδϕ
( , )r r r r− Δ + Δ

r .  The points corresponding to the fronts are the points 
where the line segments change their slope from the direction almost parallel to the 

Figure 3. An end-to-end, multi-step analytical pipeline for 
spatio-temporal turbulent front detection and tracking. 

x -axis to 
the direction almost parallel to the -axis (Figure 4). Based on this intuition, our strategy is 
to discover these transitions. The following subsections describe the key steps involved in 
this discovery process.     
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3.1. Data pre-processing 
 Convoluted linear filtering: To reduce noise and 
amplify the signal, the data is first smoothed along both the 
temporal and spatial dimensions using a convoluted linear 
filtering algorithm [6]. Intuitively, the filter utilizes a 
“moving average” technique, where the value of  at 
each spatial point is the weighted average of the  
values for the surrounding points; more distant points are 
weighted less than closer ones.  Filtering along the time 
dimension is performed similarly. 

 Sliding window linear approximation: The smoothed 
 values are then linearly approximated for each 

spatial window  in a sliding fashion along the r-dimension (default,Δ

 
Figure 4. Front points are 
where the linear segments 
change their slope direction 
from x-parallel to y-parallel. 
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(Figure 4). A linear model function is l r = ⋅ +  for each r-window of data.  Since the 
slope (a) and intercept (b) values have different magnitudes, we normalize the values to the [-
1, 1] range (Figure 5.B).  
 Slope-and-intercept anti-correlation: We observe that the slope and intercept will be 
anti-correlated (a positive slope would likely result in a negative intercept, and vice versa).  
The visual reasoning behind this anti-correlation is depicted in Figure 5.A, whereas the true 
anti-correlated data is depicted in Figure 5.B. 



3.2. Front detection 
 Slope-intercept product: This strongly anti-correlated pattern suggests multiplying 
the slope and the intercept can effectively amplify the signal to be able to clearly see the 
curvature points of interest. We further normalize the product of the slope and the intercept to 
create an all-positive graph.  This will further amplify the differences in the data’s direction 
and magnitude, and thus will create a 
slope-intercept-product (SIP) “signal” 
representing the data at each time-step 
(Figure 6.A). 
 Boolean matrix: We establish a 
threshold value  to be utilized 
for all such signals through the series of 
t values.  The thresholding operation 
converts the entire dataset of SIP signals 
to a matrix of Boolean TRUE/FALSE 
values, where TRUE corresponds to 
signal values v, , and FALSE 
represents values for which v .  We smooth this Boolean vector to ensure consistency in 
TRUE/FALSE sequences (e.g.: to prevent against detection of false-positives).  This 
completes the detection process–the points at which sequences of Booleans change to their 
counterparts are the points contributing towards formation of fronts.  For example, the two 
points at radius index r=110 and r=220 in Figure 6.B are such points for time index t=100.   
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Figure 5. (A) Reversed signs for slope and intercept. 
(B) Normalized slope-and-intercept anti-correlation. 
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3.3. Front Tracking 
 Quantifying the speed of front propagation in space and time: After creating this 
matrix of Booleans, we plot a 
heat-map by utilizing only 2 
colors (dark red and blue) to 
represent TRUE and FALSE, 
respectively.  This spatial-
temporal heat-map of SIP signal 
values is depicted in Figure 6.B.  
As one can see, there are often 
multiple fronts propagating over 
time along the radial dimension.  
For example, one front protrudes 
outward in the region of r index 
values of 100 to 150 and t time 
index values of 100 to 180.  Likewise, another front protrudes inward from r index values of 
150 to 225 and t index values of 100 to 300. 

Figure 6. (A) Slope-intercept product. (B) Boolean matrix. 

 This visual representation of front points via SIP signal heat-map has enabled viewing 
the propagation of these radial fronts far more clearly than from the raw data.  It is only at 
this point, the effective tracking of radial fronts has become possible.  To customize the 
process to user’s regions of interest, our algorithm accepts the specified r and t start-and-end 
values defining a rectangular region to analyze (Figure 7.A).  The algorithm then 
automatically tracks the points, at which these Boolean series change from TRUE to FALSE 



(in the case of the outward front), 
and from FALSE to TRUE (in the 
case of the inward front). It creates 
a list of front coordinate points 
and performs linear regression on 
these points (Figure 7.B).  By 
fitting a linear model, it derives 
the speed of radial propagation for 
each of these fronts.   
 The accuracy of our 
algorithm is consistent with both 
the results produced by the visual 
judgment of fusion scientists and 
with the theory [2-5].  It provides 
a robust method to track radial 
(along toroidal radius dimension) front propagation over time.  

Figure 7. (A) Selection of user’s regions of interest. (B) 
Linear regression on front points for speed of propagation. 

4. Conclusion 
 Data produced by extreme-scale fusion plasma simulations are not only massive in size 
but also inherently complex due to the generally nonlinear, multi-scale and dynamic nature of 
the underlying physical phenomena.  Yet, techniques for analyzing these complex signals are 
in their infancy.  In particular, the dynamics of large, or meso-scale, turbulence patterns and 
structures has not been thoroughly addressed.  These issues are relevant to galactic dynamics 
simulations, and so are of interest beyond magnetic fusion energy.   
 Toward this goal, we formulated and achieved two feasible objectives: (1) automatic 
detection of spatial-temporal turbulent fronts and (2) quantification of turbulence dynamic 
behavior, i.e. the speed and direction of dynamic turbulent front propagation.  Using our 
advancements, we were able to automatically identify and characterize complex global 
turbulent frontal spatio-temporal structures.   The results of our techniques were validated 
and accepted by fusion-science experts and agreed with the theory. 
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