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ABSTRACT
Social platforms have paved the way in creating new, modern ways

for users to communicate with each other. In recent years, mul-

tiple platforms have introduced “Stories” features, which enable

broadcasting of ephemeral multimedia content. Specifically, “Friend

Stories,” or Stories meant to be consumed by one’s close friends, are

a popular feature, promoting significant user-user interactions by

allowing people to see (visually) what their friends and family are

up to. A key challenge in surfacing Friend Stories for a given user,

is in ranking over each viewing user’s friends to efficiently priori-

tize and route limited user attention. In this work, we explore the

novel problem of Friend Story Ranking from a graph representation

learning perspective. More generally, our problem is a link ranking
task,where inferences aremade over existing links (relations), unlike
common node or graph-based tasks, or link prediction tasks, where

the goal is to make inferences about non-existing links. We propose

ELR, an edge-contextual approach which carefully considers local
graph structure, differences between local edge types and direction-

ality, and rich edge attributes, building on the backbone of graph

convolutions. ELR handles social sparsity challenges by considering

and attending over neighboring nodes, and incorporating multiple

edge types in local surrounding egonet structures. We validate ELR
on two large country-level datasets withmillions of users and tens
of millions of links from Snapchat. ELR shows superior performance

over alternatives by≈8% and≈5% error reductionmeasured byMSE

andMAE correspondingly. Further generality, data efficiency and

ablation experiments confirm the advantages of ELR.

CCS CONCEPTS
• Information systems→ Social networks; • Networks→ So-
cial media networks; Online social networks; • Computing
methodologies→Neural networks.
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1 INTRODUCTION
In recent years, social platforms have become increasingly prevalent.

Such platforms have revolutionized how users communicate with

each other through new features which are enhanced by, and mutu-

ally benefit users in creating andmaintaining friendships. “Stories” is

one such extremely popular feature, initially introduced by Snapchat

in 2013
1
, which enables each user to broadcast user-generated mul-

timedia (photos and short videos) to their friends and other viewers.

Stories on Snapchat are ephemeral, and last for a short duration (24

hours), promoting frequent and ephemeral communication in the

form of visual status updates. Since their inception, many social plat-

forms such as Instagram, Twitter, Weibo, etc. have incorporated sim-

ilar concepts into their apps, increasing their prevalence and wide-

spread use. One of the most prevalent forms of Stories on Snapchat

is Friend Stories, in which the target audience for posted Stories are

friends and family. Users can see Friend Stories from their friends,

eachofwhich contains anephemeral reel of content. Shown inFigure

1, these appear as circleswith snapshots on eachuser’sDiscover page

(left), each ofwhich can be clicked and expanded to show the content

reel (right). Since each user is exposed to content frompossiblymany

friends, attention routing and prioritization becomes an important

facet in promoting engagement. Our work focuses on this task of al-

gorithmic Friend StoryRanking (FSR)withmachine learningmodels.

Our problem is an instantiation of a link ranking task, of rank-

ing relations for each user by affinity. Although typical modeling

approaches for tabular data could beused (gradient boosting, feedfor-

wardnetworks) for thisproblem,weapproach ithere instead fromthe

perspective of graph representation learning. Recently, graph neural

networks (GNNs), which learn node representations via convolution

over node features and graph topology, have emerged as a prevalent

modeling paradigm for graph data. GNNs have shown promising

results on several graph learning tasks, such as node classification

[16, 24], link prediction [30, 61] and social network analysis [43, 49,

57]. However, their direct application for our problem is impeded by

a few factors: (i)Most priorwork inGNNs focuses on node and graph

classification [16, 24, 54]; although a few works tackle prediction

ofmissing links [60, 61], this is a different context than ours, which
involves ranking over existing links. The link ranking task is central
to our learning objective, and is mostly unexplored in prior work.

(ii) Rich user-user interactions are common in social data, and key

in relation measurement [22]; yet, most existing GNN frameworks

are not proposed to handle edge-level attributes [16, 24, 52]. (iii) The

exploration of GNNs for large-scale social graph learning problems

1
https://snap.com/en-US/news/post/surprise
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Figure 1: An example of Friend Stories on Snapchat. Friend
Stories aredisplayedasa ranked list of circles (friends)on the
“Stories” page (left). Tapping on a circle opens the Friend’s
Story, containing the friend’s user-generated photos and
videos about their activities (right).

is still quite limited [43, 49, 57], and subject to real-world challenges,

including social graph structure and user interaction sparsity.

Our work discusses the use of GNNs in pursuit of solving the

FSR problem. We first formulate our goal as pointwise prediction

of (directed) Friend Story affinity between two users. In our model,

we expand the perception of ranking a given link beyond the link

in question, such that Friend Story affinity between two users is

predicted as a function of not only their activities, but also based on

interactions and influence from their local communities. To this end,

we differentiate multiple types of relationships (pairwise, intra-ego,

and inter-ego) in the union of the two users’ egonets and consider

each of their contributions, governed via self-attention over neigh-

bors, improving learning over sparse user activity. We also consider

edge attributes as a key component of message passing during ag-

gregation, with the goal of learning rich representations for each

user, link, and relation type, utilizing them to predict directed Friend

Story affinity for ranking. Intuitively, our enhancements enable us

to well-utilize local community information between the two user’s

friends and shared relations to overcome potential interaction spar-

sity and enhance inference quality. We propose a novel framework

realizing these ideas, called ELR (Edge-contextual Local Graph Con-

volutions for Friend Story Ranking. We evaluate ELR using two

large-scale datasets using country-level data from Snapchat. We

show that ELR outperforms various tabular and graph-aware base-

lines across datasets and error metrics. We also study the generality

of ELR, showing outperformance onmultiple FSR-related objectives.

Further ablation studies confirm the value of each of ELR’ compo-

nents. Lastly, we show some qualitative results demonstrating the

importance of neighbor attention in our design.

In summary, our contributions are as follows:

• We study the Friend Story Ranking (FSR) problem, with applica-

tion to different social platforms, using Graph Neural Networks

(GNNs). FSR is a link ranking problem, differentiating it frommost

prior GNN-related work.

• We propose a novel model, ELR, which (i) utilizes local neigh-

borhood information, (ii) heavily leverages edge attributes (ii)

differentiates relation types, and (iv) attends over neighbors to

learn predict Friend Story affinity.

• We experimentally show ELR’s capacity for error reduction (up
to 8%) against other approaches, generality and careful design

on two large-scale graph datasets from Snapchat withmillions of
users and edges and hundreds of node and edge attributes.

Wenote that althoughELRwasdesigned for FSR, its intuitionextends
naturally to diverse link ranking problems, which the community

may explore at large in future years.

2 RELATEDWORK
We discuss related work in three areas: graph representation learn-

ing, edge-based inference, and social network analysis.

Graph representation learning. Graph representation learn-

ing (GRL) aims to learn representations suitable for graph-based

tasks, mainly including node/graph classification [21, 48, 50, 62],

and link prediction [17]. Early methods focused on non-attributed

graphs, leveraging insights from language modeling [39] to learn

embeddings which preserve node co-occurrence statistics on ran-

domwalks [40]. Several future works explored variations including

biased randomwalks [15], multiple orders of proximity [47, 53], at-

tribute awareness [8], andmore. [41] unified suchmethods asmatrix

factorization problems with nuanced differences. In recent years,

graph neural networks (GNNs) have risen to prominence as a flex-

ible modeling solution for attributed graphs. GNNs can be viewed

from both spectral and spatial perspectives as convolutions of node

features over graph topology [5], with components of feature trans-

formation and aggregation [36]. Multiple architectures have been

proposed in recent years,which adapt the aggregation scheme. Some

notable architectural ideas include mean-pooling and first-order ap-

proximations [24], generalized aggregation, feature concatenation

and inductive usage [16], adaptive aggregation via self-attention on

node features [52], jump connections [54], and more. Several other

works extend these ideas to graph-level representations via pooling

[37, 58].Most of theseworks focusonacademic settings,with smaller

datasets on well-defined, homophilic node classification tasks; only

few works apply GNNs to large-scale industrial tasks [43, 49, 57],

and these do not focus on link ranking as ours does.

Link-Based Inference. Several methods focus on inferences on

edges, or links. The main line of edge-based inference is on link

prediction (LP), which aims to predict missing (or future) links given

existing graph information [34]. LP is a common problem in social

networks, where it often manifests as a friend recommendation

task. Early work in LP used unsupervised heuristics, such as com-

mon neighbors [56], centrality and randomwalks [31]. Later works

used pair-based features to train traditional supervised models. In

recent years, neural methods for modeling pairwise associations

have become popular, such as neural collaborative filtering [18] and

other feedforward architectures [6].ManyGRLmethods [15, 40] also

naturally produce edge probabilities between pairs of nodes, and

GNN-based methods common often equip inner product decoders

on top of node representations to train on LP tasks [16, 25]. A few

works usemore complex decoders; [1, 28] propose using asymmetric

projections on learned node embeddings, while [12] suggests learn-

ing node embeddings conditioned on edge type. [60, 61] recently

proposed methods for LP via enclosing subgraph classification on

academic data, but suffers in scalability. Unlike these works, ours no-

tably uses link attributes in learning, focuses on link ranking rather

than LP, and uses a GNN encoder.



Social Network Analysis. Social network analysis literature

coincides with graph mining literature on topics including graph

clustering [4, 7, 46], community detection [3] anomaly detection

[2, 9, 45], engagement modeling [44, 49, 55] and pattern or motif

mining [27, 42]. Many works also focus on characterization and

behavioral understanding in social networks. Different disciplines

from sociology, computational social science and machine learning

have yielded shared insights on the value of learning from “friends of

friends” relationships. For example, [38, 59] observe homophilic ten-

dencies between users across multiple modalities in social platforms.

[19, 33] amongst others discuss the value of social triadic closure

in link formation, and [26, 29] demonstrate evidence of supporting

structural balance theory in signed networks. Other works in social

sciences demonstrate the evident impact of users’ local communities

on success of relationships [23]. Several works have also shown

the value of utilizing neighborhood information to enhance user-

item recommendation [11, 20, 35], based on the idea that similar

users have similar preferences. Our work incorporates these ideas of

neighbor preference smoothness more directly to the task of affinity

prediction via a GNN-based model.

3 PRELIMINARIES
Social Network: We consider a social network to be described by a

graphG,wherenodesaredefinedoverasetof registeredusersV , and

edges are defined over dyadic ties between users (commonly called

edges or links)E, reflecting friendships on the platform.We also con-

sider that each node is endowedwith𝑑𝑢 features, and each edgewith

𝑑𝑒 features.Wedenote thenode features as amatrixX∈R |V |×𝑑𝑢
, and

the edge features as a (sparse) tensor E∈R |V |×|V |×𝑑𝑒
. We write x𝑢

to indicate the node features of a user𝑢 (a single row fromX), and e𝑢𝑣
to indicate the edge features on directed edge𝑢→𝑣 (denoted as (𝑢,𝑣)
as an ordered tuple, for brevity). Although all friendships are bidirec-

tional in our case (if𝑢→𝑣 exists, 𝑣→𝑢 also exists), we consider G
to be a directed graph, since relationships are directed and two users

may have asymmetric interactions. As such, e𝑢𝑣 ≠e𝑣𝑢 in general.

Node features on users typically include information about how

users use the app, such as login frequency, aggregate engagement

habits, ad consumption, app tenure, etc. Edge features include in-

formation about social interactions, like sending and viewing direct

messages (Chats, Snaps), watching each others’ Friend Stories, etc.

Although social network graphs are in general dynamic given users

change engagement patterns, new users are added and removed,

and new friendships formed and removed (i.e. G,X,E all change over

time), we simplify the problem here by fixing the state of all three

at time 𝑡 . In practice, the model we will describe can be re-trained

over time accordingly to maintain its accuracy and accommodate

the evolving social network.

Ego Network: Let 𝑢 denote a registered user. We use N(𝑢) to
represent the set of friends of 𝑢, or formally, {𝑣 ∈ V||(𝑢,𝑣) ∈ E}.
The ego network (egonet) [10] of𝑢 is a subgraph of the whole social

network graph G. Nodes in the egonet include the focal node (ego)
𝑢 and neighborsN(𝑢) (alters). The egonet inherits all edges that are
between any two nodes in {𝑢}∪N (𝑢) Formally, the set of edges is

{((𝑢,𝑣) ∈E)∪((𝑣,𝑢) ∈E)|𝑣 ∈𝑢∪N(𝑢)}.
Friend Story Affinity: Friend Story affinity measures the pos-

sibility of a user engaging with a friend’s Stories. To quantify the

engagement, we define the affinity score, 𝑠𝑢𝑣 ∈ (0,1) for directed
relation (𝑢,𝑣), where larger 𝑠𝑢𝑣 implies a higher engagement. Note

that 𝑠𝑢𝑣 and 𝑠𝑣𝑢 are different. A high engagement on 𝑣 ’s stories by

𝑢 does not indicate 𝑢’s stories are also attractive to 𝑣 . Solving the

FSR problem of 𝑢 can be simplified as sorting the Friend Story en-

gagement scores for all 𝑣 ∈N (𝑢). In particular, let 𝑣1 and 𝑣2 denote
two friends of 𝑢, if 𝑠𝑢𝑣1 > 𝑠𝑢𝑣2 , then the story from 𝑣1 should be

ranked higher than the story from 𝑣2. This is effectively a pointwise

learning-to-rank task, where𝑢 is the query, andN(𝑢) are the results.
Various empirically observed metrics of interest can be selected to

define 𝑠𝑢𝑣 , such as the click-through rate (CTR) for Friend Story (how

many times did𝑢 view 𝑣 ’s Friend Story normalized by the number

of total opportunities or impressions), or the total view time (TVT)

that𝑢 spends watching 𝑣 ’s stories.

We define the Friend Story Ranking (FSR) problem as follows:

Problem (Friend Story Ranking). Given graph G(V,E), node
features X and edge features E, design a model to predict the future
Friend Story affinity score 𝑠𝑢𝑣 for each (𝑢,𝑣) ∈E.

More generally, we can consider a generalized link ranking prob-

lem by replacing the Friend Story specificity of the affinity score

with a more general link-based affinity score. Note that we gener-

ally consider the observed edge features e𝑢𝑣 to contain information

(explicitly or implicitly) about previously observed affinity 𝑠𝑢𝑣 ; we

clarify that observed e𝑢𝑣 are from past interactions, while our goal

is to predict 𝑠𝑢𝑣 for a future time. Upon solving the problem, we can

sort all relevant 𝑠𝑢𝑣 for (𝑢,𝑣) ∈E, keyed by𝑢 offline. In practice, we

technically only need to make inferences for each 𝑣 ∈ N (𝑢) that
actually has posted a Friend Story at the time when 𝑢 views the

Discover page; if 𝑣 does not post a Friend Story, they cease to be a

ranking candidate. Note that generating predictions for (𝑢,𝑣) ∈ E
imposes a total ordering, which allows us to trivially select eligible,

relevant candidates at the time of ranking.

4 OURAPPROACH: ELR
A straightforward way to approach the FSR problem would be to

learn a tabular model over the edge features e𝑢𝑣 . While conceptually

simple, this approach falls short by missing the opportunity to use

social information outside the relation of interest (𝑢,𝑣) to enhance
our prediction. Thus, we approach the FSR problem from a graph

representation learning perspective, which allows us to incorporate

information from neighboring nodes, edges and their features into

the inference. We reason that, intuitively, other social factors may

govern the prediction of 𝑠𝑢𝑣 . For example, if𝑢 is a new user who has

never watched 𝑣 ’s Friend Story in the past, but several of𝑢’s friends

enjoy 𝑣 ’s Friend Stories, this improves our assessment of the future

𝑠𝑢𝑣 . Additionally, knowing that𝑢’s best friend enjoys 𝑣 ’s Friend Story
is especially informative, compared to a casual acquaintance𝑢 does

not interact with. More generally,𝑢 and 𝑣 may share some friends,

and their relations could also mediate our estimate of 𝑠𝑢𝑣 . We utilize

all these insights in designing our model, ELR.
Figure 2 illustrates ELR’s design, which consists of three modules

including local graph encoding, friendship categorization, and affin-

ity score prediction. The local graph encoding module leverages a

GNN-inspiredneural network to learn representations for bothusers

andrelations in the local communitygraph; the friendshipcategoriza-

tionmodule differentiates three types of relations including pairwise
relation, intra-ego relation and inter-ego relation according to their
relative locations and status in the local graph. Finally, the affinity



score prediction module jointly utilizes the three types of relations

to predict the affinity score 𝑠𝑢𝑣 . Next, we introduce ELR in detail.

4.1 Edge-Contextual Graph Encoding
As aforementioned, predicting Friend Story affinity purely based

on (𝑢,𝑣) neglects contextual information in the social network. We

first introduce the concept of edge-contextual graph as an augmented

input which expands our perception from pairwise relations to the

context-providing surrounding edges.

4.1.1 Edge-Contextual Graph. The edge-contextual graph is a sub-
graph of the social network based on the egonets of the source and

target nodes. We define it as

Definition 4.1 (Edge-ContextualGraph). Given an edge (𝑢,𝑣)
∈G, we define its edge-contextual graph G𝑢𝑣 as the induced subgraph
over nodes in the egonets of 𝑢 and 𝑣 . Formally, it contains the nodes
V𝑢𝑣 =N(𝑢) ∪N (𝑣) and edges E𝑢𝑣 = {((𝑖, 𝑗) ∈ E) ∪ (( 𝑗,𝑖) ∈ E)|𝑖 ∈
(N (𝑢)∪N (𝑣))∧ 𝑗 ∈ (N (𝑢)∪N (𝑣))}.

Informally, the node set contains all users that are friends of𝑢 or 𝑣 ;

this includes both𝑢 and 𝑣 , since𝑢 ∈N (𝑣) and 𝑣 ∈N (𝑢) by construc-
tion. The edge set includes all relations between𝑢, 𝑣 , and both their

friends.Whileegonets focuson the local communitycenteredaround

a single node, the edge-contextual graph, G𝑢𝑣 provides an expanded
view of network relationswith (𝑢,𝑣) as the focal point. Note thatG𝑢𝑣
is not quite the same as the union of egonets for𝑢 and 𝑣 , since it also

includes all edges between𝑢’s friends and 𝑣 ’s friends, but is similar in

its intent to capture local community structure as a subgraph ofG. In

the remainder of this section, as we build towardsmaking inferences

for 𝑠𝑢𝑣 , we utilize only the graph structure encompassed in edge-

contextual graph G𝑢𝑣 , with globally shared node and edge features
X,E, rather thanG as awhole. Specifically,ELR takes edge-contextual
graph as an instance of input whenmaking inferences for 𝑠𝑢𝑣 . We

find this choice is advantageous, as it allows us to ignore spurious

and irrelevant links too far from the edge (𝑢,𝑣) in question, and limits

the accesses required when producing an inference for any edge.

In practice,we construct node featuresX and edge featuresE from
historical user activities and user-user interactions respectively, us-

ing summary statistics such as number of Snaps/Chats sent, total

session time, etc. A list of representative features are given in sup-

plementary material. We note that G𝑢𝑣 contains rich edge features
which characterize link behaviors. Since the affinity score 𝑠𝑢𝑣 is

defined on links, modeling edge features properly is essential.

To capture complex associations between nodes, their features

and interactions, ourfirst step is to encode the edge-contextual graph

into Euclidean space. To this end, we utilize a GNN-based encoding

scheme.We adopt GraphSAGE [16] as our GNNmodel because of its

scalability in industrial scenarios [57]. In particular, a GraphSAGE

layer is defined as follows:

h𝑙𝑢 =𝜎 (W·AGG({h𝑙−1𝑢 }∪{h𝑙−1𝑣 ,∀𝑣 ∈N (𝑢)})), (1)

where h𝑙𝑢 is the node representation for user𝑢 from the 𝑙-th Graph-

SAGE layer (h0𝑢 = X), and 𝜎 (·) represents a non-linear activation
function, andW denotes neural network parameters (in our case, a

single feedforward layer). AGG(·) is an aggregation function which
pools information from𝑢 and𝑢’s neighbors to update the representa-

tion of𝑢 in the next layer.We choose themean aggregator forAGG(·)
because of its efficiencywithout sacrificingmuchperformance.How-

ever, the original design of the mean aggregator is unable to handle

edge features. Edge features characterize user interactions, and their

utility has been shown in accurately predicting link-based affinity

scores in deployed MLmodels internally. Therefore, it is imperative

to preserve such information when learning representations using

GNNs. Inspired by [13, 14], we adapt the aggregation function of

GraphSAGE as follows:

h𝑙𝑢 =𝜎 (W· [h𝑙−1𝑢 ⊕MEAN({[h𝑙−1𝑣 ⊕e𝑢𝑣],∀𝑣 ∈N (𝑢)})]), (2)

where ⊕ stands for vector concatenation. Specifically, we first con-

catenate node representation h𝑙−1𝑣 with the corresponding user-to-

user features (i.e., edge feature e𝑢𝑣 ), as shown in Figure 2.We call this

custom layer Edge-GNN. The concatenated vector is then passed to

the mean aggregator for the center node. We then combine the node

representation of the center node and themean aggregated vector to

construct the node representationh𝑙𝑢 . Advantageously, Edge-GNN is

able to well-capture historical activities, user interactions and topo-

logical friendship structures in the representation learning process.

4.1.2 User Representation. We can generally capture multiple or-

ders of graph proximity usingmultiple Edge-GNN layers. In practice,

we use two Edge-GNN layers on the edge-contextual graph input to

ensure that both first-order and second-order proximity are consid-

ered. The output node representations, denoted by {h2𝑢 }, are treated
as the representation of users in the edge-contextual graph. To sim-

plify the manuscript, we omit the superscript 2 and useℎ𝑢 to denote

the representation for user𝑢.

4.1.3 Link Representation. Given a link (𝑢, 𝑣), we use the corre-
sponding pairwise edge features e𝑢𝑣 and the associated user repre-
sentations from the edge-contextual graph,h𝑢 andh𝑣 to characterize
the link between users. In particular, the direction sensitive link rep-

resentation for (𝑢,𝑣) is constructed as follows:
f𝑢𝑣 =𝜙 ( [h𝑢 ⊕h𝑣⊕e𝑢𝑣]), (3)

where 𝜙 (·) is a mapping function (e.g., neural network layers), and

e𝑢𝑣 represents the directional edge feature for𝑢→𝑣 . We empirically

find that reusing edge features for link representation directly can

improve the overall performance. One likely reason is that edge

features are highly correlated to the affinity score 𝑠𝑢𝑣 . Thus, adding

edge features after Edge-GNN could re-emphasize individual user

interactions after smoothing via the mean aggregator.

Given user representations and link representations for the edge-

contextual graph,ELRnext aims to categorize various types of friend-

ship relations, and learn their representations separately to capture

the influence of different facets of the edge-contextual graph.

4.2 Friendship Categorization
To predict the Friend Story affinity score, we capture the similar-

ity of Friend Story affinities between different pair of users in the

edge-contextual graph. Our assumption is that the Friend Story affin-

ity score 𝑠𝑢𝑣 is correlated to (1) the pairwise relation between 𝑢

and 𝑣 . Frequent historical engagement between 𝑢 and 𝑣 indicates

𝑢’s likeliness to watch 𝑣 ’s stories; (2) the intra-ego relations: 𝑢
shares similar affinity to 𝑣 ’s stories as his/her first-order friends;

(3) the inter-ego relations: the level of interest from 𝑢’s friends

towards stories of 𝑣 ’s friends can imply𝑢’s interest in 𝑣 ’s stories, due

to properties of homophily and shared preferences between friends.

Compared to state-of-the-art models in industry that mainly uti-

lize two users’ historical activities and interactions, ELR especially
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intra-ego relations between 𝑢 and 𝑢’s friends (𝑟𝑢+) and 𝑣 and 𝑣 ’s friends (𝑟𝑣+), and inter-ego relations across 𝑢’s friends and 𝑣 ’s
friends (𝑟𝑢𝑣+), leveraging learned neighbor attention (grey) to counter inherent sparsity in social interactions. Finally, the
affinity score predictionmodule jointly utilizes the relation-specific embeddings to predict the FSR affinity score, 𝑠𝑢𝑣 .

u v

u’s intra-ego relation
v’s intra-ego relation

Pairwise relation
Inter-ego relation

Figure 3: Examples of pairwise, inter-ego, and intra-ego re-
lations in a edge-contextual graph. All relations are directed
and aligned with respect to the pairwise relation,𝑢→𝑣 .

priorities local community information via edge-contextual graph

signals, capturing transitive properties which help serve to regular-

ize inferences via social structure. Figure 3 illustrates relations in

a toy edge-contextual graph. Next, we discuss the detailed designs

and intuitions for the above three category of relations.

4.2.1 Pairwise Relation. The pairwise relation of 𝑢 and 𝑣 charac-

terizes the direct Friend Story engagement on𝑢→𝑣 . It consists of

users’ activities and user-to-user interactions. We leverage the user

representations and the friendship representation from the encoded

edge-contextual graph. As shown in Figure 2, we concatenate user

representations h𝑢 , h𝑣 and friendship representation f𝑢𝑣 and learn
the pairwise relation from the link as:

r𝑢𝑣 =𝜓𝑢𝑣 (h𝑢 ⊕h𝑣⊕f𝑢𝑣), (4)

where𝜓𝑢𝑣 (·) is a fully-connected neural network layer.
Incorporating pairwise relations has been explored in state-of-

the-art approaches. Predicting Friend Story affinity score based on

pairwise relation is similar to feature-based link prediction [61].

However, in previous cases, the pairwise relation view is limited,

and does not carefully consider the relationships between users and

their ego network/local community.

4.2.2 Intra-Ego Relation. In addition to the “target” pairwise re-

lation for (𝑢,𝑣), we also look at𝑢’s friendships and 𝑣 ’s friendships.
Intuitively, user behavior and interests are influencedby their friends

because of their shared communications, and natural properties of

homophily. Looking at immediate friends is beneficial and provide

additional contextual information. For example, a user𝑢 may share

similar affinity as his/her close friends to 𝑣 ’s Stories. Therefore, we
explicitly model interactions within each egonet. Specifically, the

intra-ego relations consists of edges from𝑢 to𝑢’s friends (𝑢→N(𝑢)),
and from 𝑣 ’s friends to 𝑣 (N(𝑣)→𝑣)), aligning directions with the
target edge for inference (𝑢,𝑣). We then aim to define the intra-ego

relation representationof𝑢 byaggregating edges between𝑢→N(𝑢).
A simple approach would be to apply mean aggregation on the cor-

responding link representations as follows:

r𝑢+=𝜓𝑢+

(
1

|N (𝑢) |
∑

𝑖∈N(𝑢)
f𝑢𝑖

)
, (5)

where𝜓𝑢+ (·) is a feedforward layer. However, this treats all of𝑢’s
friends equally, and ignores the diversity of communication fre-

quency and the closeness of friendships.

Despite having many friends, most users only interact frequently

with several close friends and families. Figure 4 validates this claim:

We randomly select ≈ 100K users from Snapchat, and analyze the

percentage of interacted-with (via Chat) friends in past 3-day, 7-day,

14-day and 28-day time periods. If a user and their friend Chatted at

least once during the timeperiod, the friend ismarked as “interacted”.

Evidently, most users only communicate with less than 20% of their

on-platform friends in a two-week time period, and few users inter-

act withmore than 40% of their friends in amonth (28 days), creating

an interaction sparsity scenario. Therefore, simply averaging link

representations of all friends could lead to noisy representations by

considering many inactive friendships. Even though user-user in-

teraction can be reflected by edge features, explicitly penalizing less

communicated friendswhenaggregatinghas still been shownas ben-

eficial [32, 49]. To appropriately characterize important friends bype-

nalizing selected link representationswhen learning representations

for intra-ego relations, we use a self-attention mechanism [51, 52]

to assign friends among intra-ego relations different importance.

Specifically,we compute the importance of friend 𝑖 to𝑢 (and 𝑣 to 𝑗 ) as:

𝛼𝑢𝑖 =
exp(h⊤𝑢h𝑖 )∑

𝑖′∈N(𝑢) exp(h⊤𝑢h𝑖′ )
, 𝛼 𝑗𝑣 =

exp(h𝑗h⊤𝑣 )∑
𝑗′∈N(𝑣) exp(h𝑗′h⊤𝑣 )

. (6)

where exp(·) denotes the exponential function. The importance

scores are further incorporated into the intra-ego relations for both

𝑢 and 𝑣 as:

r𝑢+=𝜓𝑢+

( ∑
𝑖∈N(𝑢)

𝛼𝑢𝑖 ·f𝑢𝑖
)
, r𝑣+=𝜓𝑣+

( ∑
𝑗∈N(𝑣)

𝛼 𝑗𝑣 ·f𝑗𝑣
)
, (7)



Figure 4: Percentage of interacted-with friends in the past
3, 7, 14 and 28 days. Most users only communicate with less
than 20% of friends in the past 14 days. Few users interact
withmore than 40% of friends over the past 28 days.

where 𝜓𝑢+ (·),𝜓𝑣+ (·) are feedforward layers. As shown in Figure

2, two intra-ego relation representations highlight the immediate

interactions along the direction of link (𝑢,𝑣), and are part of the

input to the Friend Story engagement prediction module. Note that

by considering directions of r𝑢+ and r𝑣+ asymmetrically, we are able

to capture and attenuate information along the path𝑢→ 𝑓 →𝑣 .

4.2.3 Inter-Ego Relations. Lastly,wemodel the friendships between

friends of𝑢 and friends of 𝑣 (N(𝑢)→N(𝑣)), i.e., inter-ego network
relations. The inter-ego aim to describe the engagement and interest

of𝑢’s friends in 𝑣 ’s friends. As friends share similarities, inter-ego

relations are particularly helpful to discover underlying affinity. For

example, if 𝑣 is a less-active user whom neither𝑢,𝑢’s friend nor 𝑣 ’s

friend have much interaction with recently, it may be challenging

to predict the affinity score (𝑢,𝑣). However, if historical behaviors
show strong engagements between𝑢’s friends and 𝑣 ’s friends, our

estimation of𝑢’s affinity to 𝑣 would likely increase. More generally,

we hypothesize that inter-ego friendships carry useful information

of baseline engagement propensity between users in the two groups

of𝑢’s friends and 𝑣 ’s friends

Figure 5 bolsters our intuition between inter-ego relations and

their association with (𝑢,𝑣): We randomly select 1 million edge-

contextual graphs, and analyze the activeness of inter-ego relations

for (𝑢,𝑣) with different Friend Story CTR as the measurement of

engagement. We first compute the averaged Friend Story CTR value

for all possible links/relations. If a friendship from inter-ego rela-

tions shows higher Friend Story CTR than average, we consider it

an “active link”, otherwise we consider it an “inactive link”. The left

plot shows that for (𝑢,𝑣) with low engagement (blue), the ratio of

inactive inter-ego relations is markedly higher than (𝑢,𝑣) with high
engagement, while the right plot shows clearly that high engage-

ment (𝑢,𝑣) have considerably more active inter-ego relations. The

active inter-ego relations, which frequently co-occur with high CTR

for (𝑢,𝑣), is a valuable signal in solving the FSR problem.

Motivated by the above analysis, we construct inter-ego relation

representations for all friendships between the alters of𝑢 and the

alters of 𝑣 (N(𝑢)→𝑁 (𝑣)) as follows:

r𝑢𝑣+=𝜓𝑢𝑣+

(∑
E×
𝑢𝑣

𝛼𝑢𝑖 ·𝛼 𝑗𝑣 ·f𝑖 𝑗
)
, (8)

Figure 5: Percentage of active/inactive inter-ego relations
according to the Friend Story engagement of (𝑢,𝑣). “engaged”
means (𝑢, 𝑣) with high engagement and “not engaged” de-
notes a low engagement for (𝑢, 𝑣). We observe more active
inter-ego relations for “engaged” (𝑢, 𝑣); and more inactive
inter-ego relations if (𝑢,𝑣) are “not engaged”.

where 𝜓𝑢𝑣+ (·) is a feedforward layer, and E×
𝑢𝑣 = {(𝑖, 𝑗) ∈ E𝑢𝑣 |𝑖 ∈

N (𝑢) ∧ 𝑗 ∈ N (𝑣) ∧ 𝑖 ≠ 𝑗} denotes those cross-egonet edges in the

edge-contextual graphwhich are between𝑢’s friends and 𝑣 ’s friends.

We reuse the importance of friends as introduced for intra-ego rela-

tions because of a similar intuition: when modeling friend-to-friend

relations, the closeness of friends should be considered. Since the

friendship representation f𝑖 𝑗 isweighted by both users, the closeness
of 𝑖 to 𝑢 and the closeness of 𝑣 to 𝑗 are incorporated. Specifically,

f𝑖 𝑗 is more reliable if 𝑖 is a close friend to 𝑢, and also if 𝑗 is a close

friend to 𝑣 . Using attention scores 𝛼𝑢𝑖 and 𝛼 𝑗𝑣 to weight the link

representation can reduce noise and learn a concentrated inter-ego

representation for Friend Story affinity prediction.

4.3 Affinity Score Prediction
Lastly, we predict the Friend Story affinity score by jointly modeling

the pairwise relation, intra-ego relations and inter-ego relations. To

construct a complete view of the edge-contextual graph, We first

concatenate the three types of representations, then use a neural

network 𝜑 (·) to generate the predicted score:
𝑠𝑢𝑣 =𝜑 (r𝑢𝑣⊕r𝑢+⊕r𝑣+⊕r𝑢𝑣+). (9)

We use mean square error as the loss function:

L=
1

|E |
∑
(𝑢,𝑣)

∥𝑠𝑢𝑣−𝑠𝑢𝑣 ∥2 . (10)

In practice, we utilize minibatching and stochastic gradient descent

to train the model efficiently on large-scale graph data.

5 EXPERIMENTS
In this section, we conduct extensive experiments to answer the

following experimental questions (EQs):

• EQ1: Can ELR accurately predict affinity scores for FSR, out-

performing alternatives?

• EQ2: How do different components of ELR contribute to the

resulting predictive performance?

• EQ3:AreELR learnedattentionweights intuitiveassessments

of friend importance?

• EQ4: How does ELR performwith limited training data?

5.1 Setup
We construct two large-scale datasets from Snapchat, each spanning

one country (i.e., Region 1 and Region 2). For each dataset, we take
a snapshot of the social network structure on a specific date, and

select all recently users active in each country. Detailed construction



of datasets are introduced in supplementary materials. We collect

historical user activities and user-user interactions in the past four

weeks from the specified date. Frequencies of each type of activity

and interaction type are aggregatedwith the past 3/7/14/28 day inter-

vals as node features and edge features. In all, we have𝑑𝑢 =376 (node

features) and 𝑑𝑒 =188 (edge features). Feature examples are further

provided in supplementary materials. We then preprocess our data

with feature-wise log-normalization and 𝑧-score normalization.

Weprimarily define the target FriendStory affinity score𝑠𝑢𝑣 using

click-throughrate (CTR)on (𝑢,𝑣).CTR is formulatedas thenumberof

times𝑢 view𝑣 ’s storiesdividedby the totalnumberof times𝑣 ’s stories

were shown to𝑢, where CTR ∈ [0,1]. In addition, to demonstrate the

generality of ELR, we consider a second prediction task, where 𝑠𝑢𝑣 is
defined using the total Friend Story view time (TVT). We also apply

log-normalization and 𝑧-score normalization on TVT for preprocess-

ing.We discuss further data statistics, data pre-processing,model im-

plementation details andmodel training in supplementarymaterials.

5.2 Baselines
We compare ELRwith the following baselines to validate its perfor-

mance. Inparticular,wechoose threepairwise featurebasedmethods

and two GNNmethods.

• Linear Regression (LR): since the linear regression model can-

not handle graph-structured data, we concatenate original node

features x𝑢 ,x𝑣 and edge features e𝑢𝑣 as input to the model.

• XGBoost (XGB): We construct input similarly to LR, using a

boosted trees model instead.

• Multi-LayerPerceptron (MLP):webuilda two-layerMLPmodel,

using the same input features to LR and XGBmodels.

• GraphSAGE (GS): we train a two-layer GraphSAGEmodel with

mean aggregation on the entire network G to predict 𝑠𝑢𝑣 using

an inner product decoder on final node embeddings. We only use

node features with graph structure since [16] does not use them.

• Edge-GraphSAGE (E-GS): The same as GS, but we replace the

message-passing in the original GraphSAGEwith Equation 2 so

that edge features are incorporated explicitly in the aggregation.

We note that the above GNN approaches treat FSR akin to link pre-

diction. As discussed in Sections 1-2, our task involves link ranking,

which is different in its focus on inference for existing links and not

missing ones. However, we train the baseline approaches using ideas

posited for link prediction for best comparison. Comparing ELR and

these GNN approaches inherently shows differences in the inherent

problem settings, and their design considerations.

We use mean square error (MSE) and mean absolute error (MAE)

as theevaluationmetrics for all comparedmethods.Wetreat the rank-

ing task as a pointwise prediction one. In general, lower MSE/MAE

also strongly correlate with traditional rankingmetrics given our ob-

servations. We note that we could also adapt our task to a listwise or

pairwise ranking setting, but donot discuss these aspects in ourwork

for simplicity. Note that we do not directly predict/optimize mean

reciprocal rank (MRR) and/or normalized discounted cumulative

gain (NDCG) of the ranked friend stories. The production ranking

model utilizes a multi-task setting where a value model is applied

to combine different predictions like CTR and TVT to generate final

ranking to satisfy business goals. As a result, we focus on the pre-

diction accuracy of each individual task instead of overall ranking

metrics. The accuracy improvement of each individual prediction

Table 1: Dataset summmary statistics.

Name Region 1 Region 2

# of users (|V|) ≈1.2𝑀 ≈3.3𝑀
# of friendships (|E |) ≈20.4𝑀 ≈25.0𝑀
Node ftr dim (𝑑𝑢 ) 376 376

Edge ftr dim (𝑑𝑒 ) 188 188

Table 2: ELR outperforms baselines on the Friend Story CTR
prediction task across datasets andmetrics.

Region 1 Region 2

MSE MAE MSE MAE
LR .1510±.0140 .4078±.0101 .1411±.0095 .3832±.0079

XGBoost .0991±.0032 .2747±.0035 .0908±.0018 .2611±.0020
MLP .1014±.0015 .2595±.0077 .0986±.0037 .2541±.0040
GS .1115±.0027 .3038±.0043 .0965±.0033 .2866±.0032
E-GS .0914±.0009 .2511±.0021 .0823±.0012 .2474±.0011
ELR .0865±.0011* .2389±.0019* .0773±.0020* .2404±.0032*

* significant with Student’s T-test 𝑝 <0.001 compared with E-GS

Table 3: ELR is general, showing similar outperformance for
an alternate Friend Story TVT prediction task.

Region 1 Region 2

MSE MAE MSE MAE
LR .0730±.0060 .2492±.0032 .0683±.0044 .2357±.0050

XGBoost .0434±.0014 .1830±.0010 .0496±.0025 .1943±.0022
MLP .0414±.0008 .1852±.0009 .0435±.0012 .1823±.0015
GS .0405±.0003 .1755±.0013 .0443±.0011 .1840±.0015
E-GS .0396±.0004 .1707±.0017 .0428±.0009 .1817±.0006
ELR .0383±.0003* .1680±.0010* .0410±.0011* .1789±.0012*

* significant with Student’s T-test 𝑝 <0.001 compared with E-GS

task naturally results in improvement of the final recommendation

quality (e.g., MRR, NDCG).

5.3 Prediction Performance
We study EQ1 by comparing ELR against all baselines on predict-

ing Friend Story CTR. The results are reported in Table 2, mea-

sured by mean square error (MSE) and mean absolute error (MAE).

Clearly, ELR achieves the best performance, with both MSE and

MAEmarkedly lower than baseline methods on both datasets. ELR
significantly outperforms traditional tabular methods like LR, XGB

andMLP on both datasets. Primarily because tabular methods fail

to model the rich social network information outside of pairwise

features. Although GS and E-GS are trained on the entire social net-

work and provide more information than pairwise feature based

approaches, their errors are still considerably higher than ELR. In
particular, both E-GS and ELR leverage edge features to model user

interactions for friend story ranking. However, ELR surpasses E-

GS by almost 8%, suggesting that modeling intra-ego and inter-ego

relations explicitly is key in an accurate prediction.

To validate the generality of the ideas adopted by ELR, we extend
the task to TVTprediction on both datasets. The results are shown in

Table 3,whereELR achieves the best performance against other base-

lines. In particular, ELR improves over E-GS by around ≈5% error

reduction. The extended experiment further confirms our intuition

that our edge-focused design choices can benefit other link-based

inference tasks than our original CTR target metric.



Table 4: An ablation study reveals that the neighbor atten-
tion, inter-ego relation and intra-ego relation components
of ELR all contribute to predictive power.

Region 1 Region 2
MSE MAE MSE MAE

ELR𝑚𝑒𝑎𝑛 .0871 .2441 .0794 .2425

ELR𝑛𝑜_𝑖𝑛𝑡𝑒𝑟 .0894 .2482 .0819 .2435

ELR𝑛𝑜_𝑖𝑛𝑡𝑟𝑎 .0908 .2505 .0810 .2460

ELR .0865 .2389 .0773 .2404

5.4 Ablation Study
We next aim to answer EQ2 by conducting an ablation study to eval-
uate the relative impact of attention-based friendship importance,

incorporating intra-ego relations, and inter-ego relations to ELR.
We consider several variations of ELR including (i) ELR𝑚𝑒𝑎𝑛 , which

drops the friendship importance and uses mean pooling over link

representations for both intra-ego relations and inter-ego relations;

(ii)ELR𝑛𝑜_𝑖𝑛𝑡𝑒𝑟 ,which removes the inter-ego relation representation

𝑟𝑢𝑣+ in the affinity score prediction module, and (iii) ELR𝑛𝑜_𝑖𝑛𝑡𝑟𝑎 ,
which excludes the intra-ego relations (𝑟𝑢+,𝑟𝑣+ from ELR). Table 4
shows theperformanceof predicting friend storyCTRusing these ab-

lation variants. From the resultswe conclude that (i) the performance

of ELR𝑚𝑒𝑎𝑛 is worse than ELR, showing that the friendship impor-

tance filters unrelated links and reduces noise in ELR; (2) ELR has

lower error than ELR𝑛𝑜_𝑖𝑛𝑡𝑒𝑟 on both datasets because ELR𝑛𝑜_𝑖𝑛𝑡𝑒𝑟
drops the inter-ego relations and fails to model the dependencies

between𝑢’s friends and 𝑣 ’s friends; (3) ELR𝑛𝑜_𝑖𝑛𝑡𝑟𝑎 has higher error

than both ELR and ELR𝑛𝑜_𝑖𝑛𝑡𝑒𝑟 , suggesting that intra-ego relations
(which were dropped) are especially important in achieving good

performance, by encouraging a smoothed representation over𝑢 and

𝑢’s friends, and 𝑣 and 𝑣 ’s friends respectively. In summary, all compo-

nents contribute to ELR’s improved performance. All cases suggest

inherent advantages of our incorporation of edge features.

5.5 Friend Importance Analysis
We next evaluate how the learned friendship importances (𝛼𝑢𝑖 from

Eq.6) are correlated to raw, exhibited edge features e𝑢𝑖 to answer
EQ3. We randomly select ≈ 100K users from the testing samples

in Region 1. For each user, we compute the Pearson’s correlation

coefficient between the importance scores and four representative in-

teraction signals: number of sent/received Chats, number of viewed

Snaps, number of Friend Story views, and total Friend Story view

time. We plot the cumulative distribution function (CDF) across the

correlation statistics for the 100K users in Figure 6. We observe that

the majority of users show positive correlations between friendship

importance scores and each representative interaction signals; more

than 60% of users report positive Pearson’s correlation coefficient in

each interaction signal. Importantly, this shows that 𝛼𝑢𝑖 well-aligns

learned attention across multiple raw signals, only one or few of

which may be relevant for any given user pair (e.g. some user pairs

may Snap a lot, while others only Chat, etc.) Together with our ab-

lation experiment ELR𝑚𝑒𝑎𝑛 , this builds confidence that the learned

scores well-characterize close friendships and reduce noise from

sparsity in representation learning.

5.6 Data Efficiency
Onemay think that givenELR’smodeling choices, that itmay require

massive amounts of user data to generalize well. We thus analyze

Figure 6: Learned friend attentions are strongly correlated
to raw edge features. From CDFs of Pearson’s correlation
coefficients across users, we observe that representative
user interaction signals are positively correlated to friend
attention scores for themajority of users.

Table 5: Training on small datasets: ELR𝑙𝑖𝑡𝑒 achieves compet-
itive performance withmuch fewer (≈1%) training samples.

Region 1 Region 2
MSE MAE MSE MAE

ELR𝑙𝑖𝑡𝑒 .0880 .2408 .0791 .2422

ELR .0865 .2389 .0773 .2404

ELR’s efficiency with respect to the number of training samples

to answer EQ4. We compile two small datasets from Region 1 and
Region 2. Specifically, we select ≈1% of training links (𝑢,𝑣) for each
region.WetrainELR𝑙𝑖𝑡𝑒 onthe twosmalldatasets, andreport theCTR

task performance as shown inTable 5.We can observe that evenwith

a comparatively small amount of training samples, ELR𝑙𝑖𝑡𝑒 ) achieves
comparable performance to ELR. Moreover, this performance is still

improvedoverbaselinesusing thewholedatasets (ref.Table2),This is

highly advantageous for recurrent training, as per industry use cases.

6 CONCLUSION
In this work, we study the problem of Friend Story Ranking (FSR).

FSR is an instantiationof amoregeneral link rankingproblem, tasked

with inference over existing network links, rather than inferring

over missing or future ones. We tackle the problem from a graph

representation learning perspective, building upon recent advances

in GNNs in the ELRmodel. We incorporate socially-motivated in-

tuitions into our model design, focusing our inference to a localized

edge-contextualgraph foreach target link for inference, emphasizing

importance of edge attributes in user-user relationships in message

passing, while also learning distinguished representations across

different types of pairwise, intra-ego, and inter-ego relations in local

graph structure, and carefully attending over nodes in deriving these

representations to overcome social interaction sparsity. Through

extensive experiments, we show ELR outperforms baselines with an

impressive 8% error reduction in Friend Story CTR prediction. We

further show ELR’s generality, the relative importance of modeling

components, and qualitative findings.
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