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Graph-Based Fraud Detection in the Face of Camouflage

BRYAN HOOI, KIJUNG SHIN, HYUN AH SONG, ALEX BEUTEL, NEIL SHAH,
and CHRISTOS FALOUTSOS, Carnegie Mellon University

Given a bipartite graph of users and the products that they review, or followers and followees, how can
we detect fake reviews or follows? Existing fraud detection methods (spectral, etc.) try to identify dense
subgraphs of nodes that are sparsely connected to the remaining graph. Fraudsters can evade these methods
using camouflage, by adding reviews or follows with honest targets so that they look “normal.” Even worse,
some fraudsters use hijacked accounts from honest users, and then the camouflage is indeed organic.

Our focus is to spot fraudsters in the presence of camouflage or hijacked accounts. We propose FRAUDAR,
an algorithm that (a) is camouflage resistant, (b) provides upper bounds on the effectiveness of fraudsters,
and (c) is effective in real-world data. Experimental results under various attacks show that FRAUDAR
outperforms the top competitor in accuracy of detecting both camouflaged and non-camouflaged fraud. Addi-
tionally, in real-world experiments with a Twitter follower–followee graph of 1.47 billion edges, FRAUDAR
successfully detected a subgraph of more than 4,000 detected accounts, of which a majority had tweets
showing that they used follower-buying services.
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1. INTRODUCTION

How can we detect if a politician has purchased fake followers on Twitter, or if a prod-
uct’s reviews on Amazon are genuine? More challengingly, how can we provably prevent
fraudsters who sell fake followers and reviews for various web services from evading our
detection systems? In this article, we focus on precisely this problem—specifically, how
can we design a fraud detection system with strong, provable guarantees of robustness?

Given the rise in the popularity of social networks and other web services in recent
years, fraudsters have strong incentives to manipulate these services. On several
shady websites, anyone can buy fake Facebook page-likes or Twitter followers by the
thousands. Yelp, Amazon and TripAdvisor fake reviews are also available for sale,

This material is based upon work supported by the National Science Foundation under Grant No. CNS-
1314632, DGE-1252522, and IIS-1408924.
Authors’ addresses: B. Hooi, Machine Learning Department and Department of Statistics, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA; email: bhooi@andrew.cmu.edu; H. A. Song, Ma-
chine Learning Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA;
email: hyunahs@cs.cmu.edu; A. Beutel, N. Shah, K. Shin, and C. Faloutsos, Computer Science Department,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA; emails: {abeutel, neilshah,
kijungs, christos}@cs.cmu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1556-4681/2017/06-ART44 $15.00
DOI: http://dx.doi.org/10.1145/3056563

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 44, Publication date: June 2017.

http://dx.doi.org/10.1145/3056563
http://dx.doi.org/10.1145/3056563


44:2 B. Hooi et al.

Fig. 1. (a) Our theoretical thresholds: fraudsters in the detection region will be caught by our approach. Our
novel optimizations improve the (data-dependent) bounds by lowering it to the green region. (b) FRAUDAR

outperforms competitors. (c) A large fraction of accounts flagged by our algorithm are confirmed fraudsters:
both among detected followees (left red bar) and followers (right red bar) compared to almost none among non-
flagged accounts (two control groups). Confirmation was done by inspecting Tweets that advertise TweepMe
or TweeterGetter. (d) Real-life results—a sample fraudster caught.

misleading consumers about restaurants, hotels, and other services and products.
Detecting and neutralizing these actions are important for companies and consumers
alike.

The tell-tale sign of such fraudulent actions is that fraudsters must add many edges,
creating unusually large and dense regions in the adjacency matrix of the graph. Smart
fraudsters will also try to “look normal,” by adding links to popular items/idols (like
famous singers/actors or well-liked products)—this behavior is called “camouflage” in
the recent literature. State-of-the-art algorithms such as SPOKEN [Prakash et al. 2010]
and NETPROBE [Pandit et al. 2007] exploit exactly the density signal, but do not account
for “camouflage.”

We propose FRAUDAR, a novel approach, for successfully detecting fraudsters un-
der camouflage, and we give provable limits on undetectable fraud. We provide data-
dependent limits on the maximum number of edges a group of fraudulent adversaries
can have without being detected, on a wide variety of real-world graphs. As shown in
Figure 1(a), FRAUDAR provides limits on undetectable fraud and additionally provides
novel optimizations that strengthen this bound.
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Moreover, our method outperforms competitors and finds real-world fraud on Twitter.
In Figure 1(b), we find that FRAUDAR detects injected fraud with high accuracy, even
in the case of camouflage, where prior methods struggle to detect fraudulent attacks.
Additionally, when tested on a Twitter graph from 2009, FRAUDAR finds a 4,031 by
4,313 subgraph that is 68% dense. As shown in Figure 1(c) and (d), we find that a
majority of the detected accounts had tweets showing that they used follower-buying
services. Finally, our method is scalable, with near linear runtime in the data size.

Thus, our main contributions are as follows.

—Metric: we propose a novel family of metrics that satisfies intuitive “axioms” and has
several advantages as a suspiciousness metric.

—Theoretical Guarantees: we provide a provable bound on how much fraud an adver-
sary can have in the graph without being caught, even in the face of camouflage.
Additionally, we improve the theoretical bound through novel optimizations that
better distinguish fraud and normal behavior in real-world data.

—Effectiveness: FRAUDAR outperforms state-of-the-art methods in detecting various
fraud attacks in real-world graphs and detects a large amount of fraudulent behavior
on Twitter.

—Scalability: FRAUDAR is scalable, with near-linear time complexity in the number
of edges.

Furthermore, FRAUDAR offers natural extensibility and can easily incorporate more
complex relations available in certain contexts such as review text, IP addresses, etc.

Reproducibility: Our code is open-sourced at www.andrew.cmu.edu/user/bhooi/camo.
zip.

2. BACKGROUND AND RELATED WORK

Fraud detection has received significant focus in recent years. Many existing methods
aim to detect fraud through review text [Ott et al. 2011; Jindal and Liu 2008]. However,
these approaches are typically not adversarially robust: Spammers can carefully se-
lect their review texts to avoid detection. Even without the knowledge of the detection
system, they may mimic normal user reviews as closely as possible. Graph-based ap-
proaches detect groups of spammers, often by identifying unexpectedly dense regions
of the graph of users and products. Such methods are potentially harder to evade, as
creating fake reviews unavoidably generates edges in the graph. Graph-based methods
may be classified into global and local methods.

Global Methods: Building on singular value decomposition (SVD), latent factor mod-
els, and belief propagation (BP), these model the entire graph to find fraud. SPOKEN

[Prakash et al. 2010] considered the “eigenspokes” pattern produced by pairs of eigen-
vectors of graphs and was later generalized for fraud detection [Jiang et al. 2014a].
FBOX [Shah et al. 2014] builds on SVD but focuses on detecting attacks missed by
spectral techniques. Several methods such as CATCHSYNC have used HITS [Kleinberg
1999]-like ideas to detect fraud in graphs [Jiang et al. 2014b; Gyöngyi et al. 2004; Cao
et al. 2012; Ghosh et al. 2012; Wu et al. 2006]. BP has been used for fraud classification
on eBay [Pandit et al. 2007], and fraud detection [Akoglu et al. 2013]. CROSSSPOT [Jiang
et al. 2015] proposes a likelihood-based metric and a search algorithm for dense block
detection in graphs and tensors. All of these methods have been successful in finding
fraud but they offer no guarantees of robustness. FBOX [Shah et al. 2014] performs ad-
versarial analysis for spectral algorithms, showing that attacks of small enough scale
will necessarily evade detection methods that rely on the top k SVD components.

Local Clustering Methods: A different direction for fraud detection focuses on local
subgraphs, by analyzing the properties of egonets to detect fraud [Cortes et al. 2001;
Perozzi et al. 2014]. COPYCATCH [Beutel et al. 2013] and GETTHESCOOP [Jiang et al.
2014a] use local search heuristics to find relevant dense bipartite subgraphs. However,
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without guarantees on the search algorithm, the algorithms may not be robust to
intelligent adversaries.

Dense Subgraph Mining: Finding dense subgraphs has been an important focus of
graph theory communities and has been studied from a wide array of perspectives
[Giatsidis et al. 2011; Karypis and Kumar 1995]. Most closely related to ours is
Charikar’s work on finding subgraphs with large average degree [Charikar 2000],
which shows that subgraph average degree can be optimized with approximation
guarantees. Variants have been proposed to efficiently find large, dense subgraphs
[Tsourakakis 2015], with approximation guarantees. To our knowledge, however, this
is the first work that adapts this theoretical perspective to the challenges of fraud de-
tection and camouflage resistance and achieves meaningful bounds for our application.
Moreover, our work differs from these in its setting of bipartite graphs, and in the use
of edge re-weighting to further increase accuracy.

Social Network-based Sybil Defense: Multiple identity or “Sybil” attacks pose prob-
lems of malicious behavior in distributed systems. SybilGuard [Yu et al. 2006] and
SybilLimit [Yu et al. 2008] use a decentralized random walk approach to limit the
number of Sybil attackers. SumUp [Tran et al. 2009] and Iolaus [Molavi Kakhki et al.
2013] adapt this to content rating settings. However, these systems rely on a separate
trust network between users; our setting is fundamentally different as our approach
works directly with the user-product bipartite graph.

Social Spam Analysis in Twitter and other Social Networks: A number of papers
analyze the economy behind markets for social spam in social networks [Kanich et al.
2008, 2011] and in Twitter, in particular [Stringhini et al. 2012], collecting data about
spamming activity through honeypot [Webb et al. 2008] and other approaches. Broadly
in agreement with our findings, they find large markets for spam on Twitter for the
purpose of inflating followers and for advertisement (ranging from $20 to $100 for 1000
followers), often making the use of compromised user accounts. Stringhini et al. [2010]
use feature-based approaches to detect fraud in social networks; however, this differs
from our use of subgraph optimization approaches to detect dense groups of fraudsters.

Robust Collaborative Filtering: Researchers in the recommendation system commu-
nity have studied the ability of adversaries to distort recommendations [O’Mahony
et al. 2004] and developed collaborative filtering algorithms that are hard to manipu-
late [Mehta et al. 2007; Mehta and Hofmann 2008]. Mehta and Nejdl [2008] and Beutel
et al. [2014] directly combine fraud detection with collaborative filtering for more ro-
bust recommendations. Researchers have demonstrated that even simple camouflage,
such as giving average ratings to most items, deceives common collaborative filtering
algorithms [Mobasher et al. 2007]. To combat this type of fraud, researchers assume
limits on the knowledge of the adversary. Our approach makes no such assumptions
and rather assumes that the adversary has complete knowledge of the graph.

Handling Camouflage: Gu et al. [2015] and Virdhagriswaran and Dakin [2006] con-
sider fraud detection methods that are robust to camouflage attacks. However, both
methods focus on the time-series domain, observing changes in the behavior of fraud-
sters from system access logs rather than graph data.

A comparison between FRAUDAR and other fraud detection algorithms is summa-
rized in Table I. Our proposed method FRAUDAR is the only one that matches all
specifications.

3. PROBLEM DEFINITION

Consider a set of m users U = {u1, . . . , um} and n objects W = {w1, . . . , wn} connected
according to a bipartite graph G = (U ∪ W, E). We can consider the objects to be
followees on Twitter or products on Amazon. Table II gives a complete list of the
symbols we use throughout the article. We now describe our attack model and then our
problem definition.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 44, Publication date: June 2017.
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Table I. Comparison Between FRAUDAR and Other Fraud Detection Algorithms
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Table II. Symbols and Definitions

Symbol Interpretation
U = {u1, . . . , um} Users
W = {w1, . . . , wn} Objects
V Nodes of bipartite graph: U ∪ W
G Bipartite graph G = (V, E)
A Subset of users
B Subset of objects
S Subset of nodes, S = A ∪ B
g(S) Density metric
f (S) ‘Total suspiciousness’ metric (2)
X Current set of nodes in the greedy algorithm
�i f (X \ {i}) − f (X )
Â, B̂ Users (resp. objects) returned by FRAUDAR
m0, n0 No. of users (resp. objects) in fraud block
di ith column sum of adjacency matrix
λ Min. fraction of fraud edges per customer
glog Logarithmic weighted metric

Attack Model. We assume that fraudsters are hired to use users they control to add
edges pointing to a subset of nodes in W. For example, a business may pay for followers
on Twitter or positive reviews on Yelp. In general, fraudsters add a large number of
edges, inducing a dense subgraph between the fraudster accounts and customers, as
shown in the bottom right corner of each subplot of Figure 2. This general characteristic
of fraud was found to be true in our experiments on real datasets, as well as in many
other papers that use dense blocks to detect fraud [Beutel et al. 2013; Prakash et al.
2010; Jiang et al. 2014a; Pandit et al. 2007; Akoglu et al. 2013].

To mask the fraud, fraudster accounts can add arbitrary “camouflage,” i.e., edges
pointing from their user accounts to any of the nodes in W that are not customers.
We assume that fraudsters have complete knowledge of the graph and fraud detection
mechanisms, enabling worst-case camouflage for any fraud detection system we create.
Examples of the possible types of camouflage are given in Figure 2: (a) adding camou-
flage edges to random honest users, (b) camouflage biased toward high degree nodes,
and (c) using hijacked accounts, whereby fraudster accounts have realistic patterns of
camouflage essentially similar to that of honest users.

The case of hijacked accounts is important in practice—[Stringhini et al. 2012] stud-
ies the underground economy of markets for purchasing Twitter followers and finds
that attackers often acquire hijacked accounts, both to use them to inflate the follow
count of a target account and to promote tweets for advertising purposes.

While it is trivial for fraud accounts to add edges to any other node, it is more difficult
for customer accounts to get honest edges. In particular, we assume that a customer

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 44, Publication date: June 2017.
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Fig. 2. Three examples of possible attacks: fraudsters attempt to conceal their presence by (a) adding edges
toward random honest users, (b) adding edges biased toward popular honest users, or (c) hijacking exist
honest user accounts, and using them for fraud.

would try to increase their number of incoming edges by a significant portion, and as
a result a fraction, λ ∈ [0, 1], of their incoming edges will be from fraudsters. This
assumption would manifest itself as customers wanting to boost their follower count to
seem noticeably more popular or a restaurant wanting a significant number of positive
ratings to shift its average “number of stars” on Yelp. We will demonstrate how using
this real-world pattern significantly improves fraud detection both theoretically and in
practice.

Desired Properties of Detection Approach. Our goal is to detect dense subgraphs in G,
typically indicative of fraudulent groups of users and objects, like in the bottom-right
of each subplot of Figure 2.

INFORMAL PROBLEM 1. Given a bipartite graph, detect attacks so as to minimize the
number of edges that fraudsters can add pointing to customers without being detected.

Given that we want our detection algorithm to be able to handle camouflage, we
define the requirements for a camouflage-resistant algorithm.

Definition 3.1. Let (A,B) be a block consisting of fraudulent users and objects. A
density metric g is camouflage-resistant if when any amount of camouflage is added by
the adversary, g(A ∪ B) does not decrease.

That is, fraudsters cannot make themselves less suspicious by adding camouflage.
Our goal is to find a fraud detection approach satisfying the following criteria.

PROBLEM DEFINITION 1 (DENSE SUBGRAPH DETECTION). Design a class of density metrics
for bipartite graphs, which can be optimized (1) in near-linear time, (2) within a constant
factor of the optimum, and (3) is minimally affected by camouflage edges added by
adversaries.

Obtaining theoretical guarantees on the near-optimality of the returned subgraph
is important because, as we will later show, it allows us to offer guarantees against
worst-case fraudsters.

4. PROPOSED METHOD

Given this problem definition and attack model, we now offer FRAUDAR and our
theoretical analysis of FRAUDAR.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 44, Publication date: June 2017.
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4.1. Metric

In this section, we propose a class of metrics g that have particularly desirable prop-
erties when used as suspiciousness metrics. Namely, we will show that if g takes the
form in Equations (1) and (2), then it can be optimized in a way that is (a) scalable, (b)
offers theoretical guarantees, and (c) is robust to camouflage.

Let A ⊆ U be a subset of users and B ⊆ W be a subset of objects. Let S = A ∪ B,
and V = U ∪ W. For the rest of this article, we use g to denote the density metric that
the algorithm will optimize, i.e., the algorithm will find S to (approximately) maximize
g(S). Note that g has a single argument, which is the union of the users and objects
whose suspiciousness we are evaluating.

We propose using density metrics g of the following form:

g(S) = f (S)
|S| , (1)

where total suspiciousness f is

f (S) = fV (S) + fE (S)

=
∑
i∈S

ai +
∑

i, j∈S∧(i, j)∈E
cij, (2)

for some constants ai ≥ 0 and constants cij > 0.
Intuitively, the node suspiciousness fV (S) is a sum of constants ai corresponding to

the users and objects in S, which can be thought of as how individually suspicious that
particular user or object is. The edge suspiciousness fE (S) is a sum of constants cij
corresponding to the edges in between S, which can be thought of as how suspicious
that particular edge is (e.g., the suspiciousness of the text of a review by user i for
object j).

There are several advantages to metrics of this form. First, metrics of this form can
be optimized in a way that is (a) scalable, (b) offers theoretical guarantees, and (c) is
robust to camouflage, as we demonstrate in the rest of this article. All three of these
properties hold due to the particular chosen form in Equations (1) and (2).

Second, metrics of this form obey a number of basic properties (or axioms) that we
would intuitively expect a reasonable suspiciousness metric should meet, as we next
show. These basic properties are adapted from the “axioms for suspiciousness metrics,”
proposed in Jiang et al. [2015], to our setting where node and edge weights exist.

AXIOM 1 (NODE SUSPICIOUSNESS). A subset consisting of higher suspiciousness nodes is
more suspicious than one consisting of lower suspiciousness nodes, if the other conditions
are fixed. Formally,

|S| = |S ′| ∧ fE (S) = fE (S ′) ∧ fV (S) > fV (S ′) ⇒ g(S) > g(S ′).

AXIOM 2 (EDGE SUSPICIOUSNESS). Adding edges within a subset increases the suspi-
ciousness of the subset if the other conditions are fixed. Formally,

e /∈ E ⇒ g(S(V, E ∪ {e})) > g(S(V, E)),

where S(V, E) is the subgraph induced by S in the graph (V, E).
The edge density ρ(S) of an induced subgraph is its number of edges divided by its

maximum possible number of edges.

AXIOM 3 (SIZE). Assuming node and edge weights are all equal, larger subsets are more
suspicious than smaller subsets with the same edge density. Formally, given ai = a ∀ i,
and cij = b ∀ (i, j) ∈ E :

|S| > |S ′| ∧ S ⊃ S ′ ∧ ρ(S) = ρ(S ′) ⇒ g(S) > g(S ′).

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 44, Publication date: June 2017.
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AXIOM 4 (CONCENTRATION). A subset with smaller size is more suspicious than one with
the same total suspiciousness but larger size. Formally,

|S| < |S ′| ∧ f (S) = f (S ′) ⇒ g(S) > g(S ′).

Density metrics g of the form defined in Equation (1) satisfy these properties.

THEOREM 4.1. The density metric defined in Equation (1) satisfies axioms 1 to 4.

PROOF.
Axiom 1 (Node Suspiciousness).

g(S) = fV (S) + fE (S)
|S|

>
fV (S ′) + fE (S ′)

|S| = fV (S ′) + fE (S ′)
|S ′| = g(S ′).

Axiom 2 (Edge Suspiciousness). Let e = (u, v).

g(S(V, E ∪ {e})) = fV (S) + fE (S) + cuv

|S|
>

fV (S) + fE (S)
|S| = g(S(V, E)).

Axiom 3 (Size). Let S = A ∪ B, and ρ be the edge density.

g(S) = fV (S) + fE (S)
|S| = a + b

(
ρ|A||B|
|A| + |B|

)

= a + bρ
(

1
|A| + 1

|B|
)−1

,

which is increasing in both |A| and |B|.
Axiom 4 (Concentration).

g(S) = f (S)
|S| >

f (S)
|S ′| = f (S ′)

|S ′| = g(S ′).

Note that a few other simple metrics violate the axioms: the edge density ρ(S) itself,
as a metric, violates axiom 3: intuitively, for a fixed density, this metric does not increase
as the size of S increases. On the opposite end, the total edge weight function fE (S)
violates axiom 4 as it does not consider how concentrated the edge weight is. In contrast,
average suspiciousness g(S) = f (S)

|S| scales in a reasonable way with |S| and satisfies
both axioms.

A simple example of a metric g as defined in Equations (1) and (2) is the bipartite
graph average degree.

Example 4.2. (Bipartite Graph Average Degree) Let ai = 0, and let cij = 1 if (i, j) ∈ E
and 0 otherwise. In the expression (2) for f (S), we add one term cij for each edge (i, j)
for which i, j are both in the subset S. Thus, f (S) is equal to the number of edges in
the subgraph spanned by S, or half the total degree in the subgraph spanned by S. As
a result, g(S) = f (S)

|S| is half the average degree of the subgraph spanned by S.

4.2. Interpretation of Size Normalization Approaches

In Section 4.1, we defined our average suspiciousness metric in Equation (1) as
g(S) = f (S)

|S| . The denominator can be interpreted as a normalization term that cap-

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 44, Publication date: June 2017.
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tures our expectation that as |S| increases, the values of f (S) we expect to observe
should increase. In particular, g(S) = f (S)

|S| involves a linear normalization term (since
its denominator is proportional to |S|), roughly corresponding to an expectation that as
|S| grows, f (S) scales approximately linearly.

We next consider the space of possible choices for the exact form of the normalization
term and justify our choice of the linear normalization as in Equation (1). Consider the
family of normalizations based on powers of |S|; i.e.,

gα(S) = f (S)
|S|α . (3)

Examples include the total suspiciousness g0(S) = f (S)
|S|0 = f (S), and average suspicious-

ness g(S) = g1(S) = f (S)
|S| .

The key intuition for α = 1, i.e., linear normalization, which we explain in more
detail in Appendix A, is that linear normalization roughly corresponds to normalizing
by the standard deviation of f (S). Normalizing f (S) by its standard deviation is based
on the idea of measuring the suspiciousness of a set of nodes by the number of standard
deviations above the mean of f (S). Indeed, for the purpose of anomaly detection, mea-
suring anomalies in units of standard deviations is a common and natural approach
(e.g., this is done when using z-scores for anomaly detection). This is because standard
deviations are a natural scale measure for the distribution of deviations from the mean
that we would typically expect.

4.3. Algorithm

Let f and g be as given in Equations (1) and (2). In this section, we give an algorithm
for optimizing the density metric g in near-linear time.

Algorithm 1 describes our proposed FRAUDAR algorithm, a greedy approach in-
spired by that of Charikar [2000] but which covers our broader objective class. We
start with the entire set of nodes U ∪ W, and then repeatedly remove the node that
results in the highest value of g evaluated on the remaining set of nodes. Formally,
denote by X the current set we are optimizing over; initially, we set X = U ∪ W. Let
�i = f (X \{i})− f (X ) be the change in f when we remove i from the current set. At each
step, we will select i to maximize �i, i.e., to leave behind the set with highest value of
f . We then remove i from X . We then repeat this process: We recompute the values of
� j , and then choose the next node to delete, and so on. This leads to a shrinking series
of sets X over time, denoted X0, . . . ,Xm+n of sizes m+ n, . . . , 0. At the end, we return
the one of these that maximizes the density metric g.

The key fact that allows the algorithm to be efficient is the forms for f and g in
Equations (1) and (2). When i is removed, the only values of � j that need to be updated
are those where j is a neighbor of i. This is because for all other j, the expressions (1)
and (2) ensure that � j does not change. Hence, the updates are fast: for each (i, j) ∈ E ,
over the lifetime of the algorithm we will perform at most one such update over this
edge, for a total of O(|E |) updates. Using appropriate data structures, as we next
describe, each update can be performed in O(log |V|) time, totalling O(|E | log |V|) time.

Priority Tree. Each element i ∈ X has a priority that will change as the algorithm
progresses: The priority of element i at the tth iteration is �i = f (Xt \ {i}) − f (Xt). This
ensures that in Line 5, the element i∗ = arg maxi∈Xt g(Xt \ {i}) we wish to find is exactly
the element of highest priority, allowing us to retrieve it quickly (in O(log |V|) time, as
we explain below). Note that it does not matter if we use f or g in the arg max since
the denominator of g in Equation (1), |Xt \ {i}|, is the same for all possible deletions i.
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ALGORITHM 1 : FRAUDAR which greedily removes nodes to maximize a metric g.
Line 5 and 6 run in O(log |V|) time, using a data structure described in Section 4.3.
Require: Bipartite G = (U ∪ W, E); density metric g of the form in Equation (1)

1: procedure FRAUDAR(G, g)
2: Construct priority tree T from U ∪ W  see Section 4.3
3: X0 ← U ∪ W  suspicious set is initially the entire set of nodes U ∪ W
4: for t = 1, . . . , (m+ n) do
5: i∗ ← arg maxi∈Xi g(Xi \ {i})  exonerate least suspicious node
6: Update priorities in T for all neighbors of i∗

7: Xt ← Xt−1 \ {i∗}
8: end for
9: return arg maxXi∈{X0,...,Xm+n} g(Xi)  return most suspicious set Xi

10: end procedure

These priorities are stored in the priority tree T constructed in line 2 of Algorithm 1.
This data structure is a binary tree with all |V| elements as leaves, all at the bottom
level of the tree. Each internal node keeps the track of the maximum priority of its two
children.

The priority tree supports fast retrieval of the maximum priority element (used in
Line 5 of Algorithm 1); it does this by starting at the root and repeatedly moving to
the child with higher priority. It also supports quickly updating priorities: Since all the
leaves can be stored in fixed locations, we can easily retrieve the leaf at any index to
update its priority. Then, after updating that node’s priority, we travel up the tree to
update each parent up to the root (used in Line 6). Each of these operations on T takes
O(log |V|) time.

Scalability. The bottleneck is the loop in Lines 5 to 7 that runs m+ n times. Lines 5
and 6 take O(log |V|) as discussed, while Line 7 is constant time. Finally, we need |E |
updates to node priorities, one for each edge. Thus, the algorithm takes O(|E | log |V|)
time. Its space complexity is O(|E |) if we store the whole graph in memory. However, if
we store the graph externally and only retrieve neighbor lists of individual nodes when
they are needed (i.e., before the node is deleted, in Line 6 of Algorithm 1), the space
complexity reduces to O(|V|), which is the space needed to store the priority trees, since
these trees contain at most O(|V|) nodes.

4.4. Theoretical Bounds

So far, we have shown that g can be optimized in near-linear time. In this section, we
will show that when f and g are of the form (1) and (2), FRAUDAR is guaranteed to
return a solution of at least half of the optimum value.

Note that the metric g, treated as a set function, is in general neither submodular
(i.e., ∀A,B ⊆ V, g(A) + g(B) ≥ g(A ∪ B) + g(A ∩ B)) or supermodular (i.e., ∀A,B ⊆
V, g(A) + g(B) ≤ g(A∪B) + g(A∩B)). For simplicity, we will set all node weights ai to 0
and all edge weights cij to 1. To show that g is not submodular, consider a graph with
only two nodes, i and j, joined by an edge; then

g({i}) + g({ j}) = 0 < g({i, j}) + g(∅).

For supermodularity, consider a graph with three nodes, i, j, k, and edges ik and jk.
Then,

g({i, k}) + g({ j, k}) = 1/2 + 1/2 > 2/3 + 0 = g({i, j, k}) + g({k}).
Since g is not submodular or supermodular, we cannot use the standard efficient

approximate or exact algorithms for these (such as the 1 − 1/e approximation factor
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greedy algorithm [Nemhauser et al. 1978]). However, a different approach used by
Charikar [2000] does allow us to obtain a 1/2 approximation guarantee.

THEOREM 4.3. Let A,B be the set of users and objects returned by FRAUDAR. Then,

g(A ∪ B) ≥ 1
2

gOPT,

where gOPT is the maximum value of g, i.e.,

gOPT = max
A′,B′

g(A′ ∪ B′).

PROOF. Let the elements of V be labeled v1, v2, . . . , vm+n. We define “weight assigned
to node vi in S” as

wi(S) = ai +
∑

(v j∈S)∧((vi ,v j )∈E)

cij +
∑

(v j∈S)∧((v j ,vi )∈E)

c ji,

where ai(≥0) indicates the weight of node vi and cij(>0) indicates that of edge (vi, v j)
as in Equation (2). Note that when node vi is removed from the current set S at some
point in the algorithm, wi(S) is the decrease in the value of f , since it is the sum of all
terms excluded in Equation (2) when node vi is removed.

Now consider the optimal set S∗. For each node vi ∈ S∗, we claim that wi(S∗) ≥ g(S∗).
Otherwise, removing a node with wi(S∗) < g(S∗) results in

g′ = f (S∗) − wi(S∗)
|S∗| − 1

>
f (S∗) − g(S∗)

|S∗| − 1

= f (S∗) − f (S∗)/|S∗|
|S∗| − 1

= g(S∗),

which is a contradiction.
Let vi be the node that FRAUDAR removes first among those in S∗, and let S ′ be the

set before FRAUDAR removes vi. Then, since S ′ ⊃ S∗, wi(S ′) ≥ wi(S∗). Moreover, since
FRAUDAR chooses to remove node vi, for each of the other remaining nodes v j ∈ S ′,
w j(S ′) ≥ wi(S ′). Summing over j (ranging over v j ∈ S ′), the left side consists of the
summands of f (S ′), each appearing at most twice since each edge score is assigned to
two nodes (namely, the two nodes incident to it), and each node score is assigned to one
node. Thus, the sum is at most 2 f (S ′), while the right side sums to |S ′|wi(S ′). Hence,
summing over j gives f (S ′) ≥ |S ′|wi (S ′)

2 . Also, note that g(A∪B) ≥ g(S ′) since A∪B is the
best set that FRAUDAR encountered, and S ′ is one of the sets that it encountered. We
conclude that

g(A ∪ B) ≥ g(S ′) = f (S ′)
|S ′| ≥ wi(S ′)

2
≥ wi(S∗)

2
≥ g(S∗)

2
.

4.5. Edge Weights and Camouflage Resistance

So far, we have seen that metrics of the form: g(S) = f (S)
|S| , where f (S) = ∑

i∈S ai +∑
i, j∈S∧(i, j)∈E cij can be optimized efficiently and with approximation guarantees. In this

section, we show how we can select metrics within this class that are resistant to
camouflage, i.e., they do not allow fraudulent users to make themselves less suspicious
by adding camouflage edges, i.e., edges toward honest objects.

Recall that ai and cij are the weights of node i and edge i j, while f (S) is the total
node and edge weight in S, respectively. A key idea of our approach is that instead of
treating every edge equally, we assign a lower weight cij when the target object j has
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high degree. This is because objects of very high degree are not necessarily suspicious:
For example, on Facebook, popular pages may be expected to gather extremely large
numbers of “likes.” Indeed, Bhamidi et al. [2015] found that in certain large Twitter
graphs, the largest degree nodes are connected to a constant fraction of the number of
nodes in the graph, in some cases exceeding half the total number of nodes. Without
downweighting based on node degree, the densest subgraphs are likely to be composed
of a group of extremely high degree nodes, rather than nodes that are suspicious. Hence,
downweighting allows us to put greater emphasis on groups of users and objects that
are unexpectedly dense, in the sense of having nodes of relatively low degree but where
an extremely large fraction of these edges lie within a dense subgraph.

Downweighting high degree columns also incorporates the intuitive assumption that
fraudulent objects are expected to have a significant fraction of edges from fraud;
otherwise, they would not be benefiting appreciably from the fraud. Thus, an object
with 100 edges, all within the dense subblock, is more likely to be fraudulent than an
object with 1,000 edges, 100 of them within the dense subblock, and the former object’s
edges should be given higher weights as a result.

Hence, if we consider the adjacency matrix with rows representing users and columns
representing objects, we would like to downweight columns with high column sum
(column-weighting). A simple result we show in this section is that column-weightings
are camouflage resistant. Recall that a density metric g is camouflage-resistant if
g(A ∪ B) does not decrease when any amount of camouflage is added by an adversary
with fraudulent users A and customers B. Let di be the ith column sum, i.e., the degree
of object i.

Formally, define a column-weighting as a choice of weighting in which each cij is a
function of the respective column sum, i.e., cij = h(dj) for some function h.

THEOREM 4.4. Let cij be a column-weighting. Then, g (as defined in Equations (1) and
(2)) is camouflage resistant.

PROOF. Adding camouflage only adds edges in the region between A (fraudulent
users) and BC (honest objects). It does not add or remove edges within the fraudulent
block; moreover, the weights of these edges do not change either as their weights only
depend on the column degrees of B, which do not change when camouflage is added.
Thus, the value of g does not change.

A natural follow-up question is whether camouflage resistance also holds for row-
weightings (i.e., selecting cij to be a function of the corresponding row sum). It turns out
that row-weightings are, in general, not camouflage resistant. This is because a fraud-
ulent user account can add a large number of camouflage edges, thereby increasing
their row sum, decreasing the weight of each of their edges. Thus, g(A ∪ B) decreases,
meaning that g is not camouflage resistant.

Hence, we may choose any column-weighting, while ensuring camouflage resistance.
The remaining question is what function to choose for the column-weighting, i.e., the
function h where cij = h(dj). It should be decreasing (so as to downweight columns
with high sum). It should shrink more slowly than h(x) = 1/x, since h(x) = 1/x allows a
single edge to contribute as much as the total contribution of a column with any number
of edges, causing us to catch columns with single ones rather than dense blocks.

Within the remaining space of choices, we note that a very similar problem of
downweighting based on column frequency appears in deciding the form of the “in-
verse document frequency” term of the popular heuristic tf-idf weighting scheme
[Rajaraman et al. 2012], in which logarithmic weighting of frequency has been em-
pirically found to perform well. We also show empirical results (in Section 5.1) that
logarithmic weighting leads to strong theoretical bounds. For these reasons, we recom-
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mend using h(x) = 1/ log(x+c), where c is a small constant (set to 5 in our experiments)
to prevent the denominator from becoming zero, or excessive variability for small val-
ues of x. We use the resulting density metric (denoted glog) in our experiments.

4.6. Implications: Bounding Fraud

Figure 1(a) shows curves representing our theoretical bounds on the maximum amount
of fraud that can be present for each possible size of the fraudulent block, based on
Theorem 4.3. We now explain how such bounds can be computed from Theorem 4.3.
Assume that the fraudulent block contains m0 user accounts and n0 customers.

In this section, we assume that no side information is present, so we set ai, the prior
suspiciousness of each node, to 0. Thus, here glog(S) = 1

|S|
∑

i, j∈S
1

log(dj+c) , where dj is
the degree of the jth object. Consider a fraudulent subgraph with m0 user nodes and
n0 object nodes. Assume that each fraudulent customer has at least a certain fraction
0 < λ < 1 of fraudulent edges: Each fraudulent customer should be receiving at least
a comparable fraction of fraudulent reviews to its actual honest reviews; otherwise it
would not be profiting appreciably from the fraud.

THEOREM 4.5. Let (Â, B̂) be the block detected by FRAUDAR. Then, the number of
edges that a fraudulent block of size (m0, n0) can have without being detected is at
most 2(m0 + n0)glog(Â ∪ B̂) log(m0/λ + c). In other words, our algorithm will detect a
fraudulent block without fail if it contains more edges than this threshold.

PROOF. By Theorem 4.3, 2glog(Â ∪ B̂) is an upper bound on the value of glog on any
subgraph of users and objects. Since the fraudulent block has m0 + n0 nodes in total;
thus, 2(m0 + n0)glog(Â ∪ B̂) is an upper bound on the value of total suspiciousness flog.

Moreover, each fraudulent customer has at most m0 fraudulent edges joined to it, and
since at least λ fraction of its edges must be fraudulent, it can have at most m0/λ degree
in total. Hence, the weight of each fraudulent edge is at least 1

log(m0/λ+c) . But since the
total weighted degree is at most 2(m0 + n0)glog(Â ∪ B̂), it follows that the number of
fraudulent edges is at most 2(m0 + n0)glog(Â ∪ B̂) log(m0/λ + c).

We apply this bound to real data in Section 5.1.
In Appendix B, we give (1) necessary conditions and (2) sufficient conditions for

FRAUDAR to detect fraudsters perfectly (i.e., with 100% precision and recall), as well
as (3) necessary conditions and (4) sufficient conditions for FRAUDAR to detect at least
one fraudulent node correctly.

From a high level, these conditions are based on the coreness of nodes, a property
of nodes that we define in Appendix B; the necessary and sufficient conditions then
involve comparisons between the coreness of the honest nodes and the fraudulent
nodes.

5. EXPERIMENTS

We design experiments to answer the following questions.
Q1. Illustration of our theorem: How strong are the bounds that FRAUDAR provides in
terms of bounding undetectable fraud in the graph? Does column weighting improve
those bounds?
Q2. Evaluation on synthetic data: How accurately does FRAUDAR detect injected fraud
under different types of camouflage attacks? Does FRAUDAR outperform state-of-the-
art competitors?
Q3. Effectiveness in real-world data: Does FRAUDAR detect true fraud in real-world
graphs? Have the fraudulent accounts already been detected by previous methods?
Q4. Scalability: Is FRAUDAR scalable with regard to the data size?
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Table III. Bipartite Graph Datasets used in Our Experiments

# of
nod

es

# of
ed

ge
s

Den
sit

y

Con
te

nt

Amazon
[McAuley and Leskovec 2013]

28K (24K,4K) 28K 2.7e-4 Review

Trip Advisor
[Wang et al. 2011]

84K (82K,2K) 90K 5.9e-4 Review

Epinion
[Leskovec et al. 2010]

264K (132K,132K) 841K 4.8e-5 Who-trust-
whom

Wiki-vote
[Leskovec et al. 2010]

16K (8K,8K) 103K 1.5e-3 Vote

We implemented FRAUDAR in Python; all experiments were carried out on a 2.4GHz
Intel Core i5 Macbook Pro, 16GB RAM, running OS X 10.9.5. The code is available
for download at www.andrew.cmu.edu/user/bhooi/camo.zip. We test FRAUDAR on a
variety of real-world datasets. Table III offers details on the datasets we used.

To test the accuracy of our method, we use synthetic attacks injected into our Amazon
dataset. We structure our “attacks” as shown in Figure 2. We injected a fraudulent block
of users and customers with varying densities.

5.1. Q1. Illustration of Our Theorem

In Figure 1(a), we showed our theoretical bounds (Theorem 4.5) applied to compute
the maximum number of edges an adversary with m0 = 50 user nodes and λ = 0.5 can
have for various values of n0, as an illustration of our theoretical bounds. The curves
in Figure 1(a) are computed by running FRAUDAR under two weighting schemes.
First, we use our glog scheme exactly as in Theorem 4.5 to get an upper bound 2(m0 +
n0)glog(Â ∪ B̂) log(m0/λ + c) on the number of fraudulent edges; plotting this against n0
gives the green region (improved) in Figure 1(a). The blue region (original) comes from
using the analogous procedure without the log-weighting, i.e., where g(S) is half the
average degree, as in Example 4.2.

In this case, we see that the log-weighted scheme provides stronger bounds, since the
bound is lower, i.e., an adversary should have fewer edges in order not to be detected.
Intuitively, this happens because down-weighting high degree columns decreases the
weight of many of the honest high degree objects in the dataset, so groups of adversaries
stand out more, resulting in stronger bounds on how many edges an adversary can have.

Next, we apply our FRAUDAR in the same way over various real-world graphs to
analyze the theoretical upper bounds computed by FRAUDAR on the density that
fraudulent blocks can have. We run FRAUDAR on four real-world graphs: Amazon
[McAuley and Leskovec 2013], Trip Advisor [Wang et al. 2011], Epinions [Leskovec
et al. 2010], and Wiki-vote [Leskovec et al. 2010]. The detailed description of each graph
is in Table III. For all datasets, Figure 3 shows the maximum number of fraudulent
edges that an adversary can have without being detected, assuming 50 fraudulent
users and varying the number of fraudulent customers. We see that we can detect
fraud most easily in Trip Advisor, followed by Epinion, Wiki-vote, Amazon; even a
fairly sparse block of density around 0.05 would stand out strongly in the Trip Advisor
graph. While density is important in determining how easy it is to detect fraud in
each graph (fraudulent blocks stand out more strongly in a sparse graph), it is not the
only factor. Indeed, Wiki-vote is actually denser than Amazon. In fact, the difficulty
of detecting fraud in each graph is mainly determined by its densest blocks, since an
adversarial block that is significantly less dense than the densest normal blocks in the
graph is unlikely to be detected.
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Fig. 3. FRAUDAR ’s bounds on fraud are stringent, on real graphs: For example, on TripAdvisor, the bound
says that a fraudulent block containing 50 user accounts and anywhere between 100 and 1, 000 products
must have density of <2% to avoid detection.

5.2. Q2. Evaluation on Synthetic Data

In Figure 1(b), we demonstrated that FRAUDAR can effectively detect fraud under
following four types of camouflage attacks: (1) injection of fraud with no camouflage, (2)
random camouflage, (3) biased camouflage, and (4) hijacked accounts, more accurately
than competitors.

We conduct experiments based on the settings at the beginning of this section, av-
eraged over five trials. For the camouflage scenarios (2) and (3), the amount of cam-
ouflage added per fraudulent user account was (on average) equal to the amount of
actual fraudulent edges for that user. For the “Random Camo” case, for each fake user
node, camouflage edges were chosen at random, with on average the same number of
camouflage edges as fraudulent edges, as shown in Figure 2(a). For the “Biased Camo”
case, for each fake user node, camouflage edges were directed toward each object with
probability proportional to the degree of the object as shown in Figure 2(b). For the
“Hijacked” case, we used a random subset of existing users to form the fraudulent
block.

In each case, we injected 200 fraudulent users and 200 fraudulent products with
various edge densities to the subsetted Amazon review graph of 2,000 users and 2,000
products, with a density of 0.0006. We compare FRAUDAR to SPOKEN in their F measure
(= 2×precision×recall

precision+recall ) in detecting the fake users. In the first set of experiments, we assume
that no honest user added an edge to the fraudulent target (i.e., object) nodes.

As seen in Figure 1(b), the results demonstrate that FRAUDAR works robustly
and efficiently against all four attacks, achieving F-measures of over 0.95 on all four
scenarios for densities of at least 0.04. In particular, FRAUDAR is equally accurate in
the non-camouflaged, random camouflage, and hijacked settings; this is not surprising
as the design of the metric g makes it ignore the effect of camouflage in most settings.
A somewhat surprising finding is that biased camouflage ends up being easier to detect
than the other cases in our experiment, particularly when the density of the injected
subgraph is low. This turns out to be because the camouflage ends up being concentrated
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between the fraudulent nodes and a small set of extremely popular products, resulting
in this combined set of nodes being caught by the algorithm. Since the set of popular
products being caught is small, the resulting accuracy ends up being higher than when
camouflage is absent, when the fraudsters may be missed entirely.

On the other hand, SPOKEN was able to reach its maximum performance of 0.9 only
when fraud blocks had densities of higher than 0.06 and under the “no camouflage”
scenario.

The experimental results in Figure 1(b) were based on the assumption that no honest
user added an edge to the fraudulent target nodes. However, in a real-world environ-
ment, some honest users may add edges to the fraudulent target nodes (which we refer
to as “reverse camouflage”). To incorporate this, we conducted another experiment us-
ing an attack model where we add edges between honest users and the fraudulent
target nodes, but with sparser density compared to the fraud blocks. We added random
edges to this region, with half the density of the fraud blocks. All other experimen-
tal settings were unchanged. The experimental results are shown in Figure 4(a). For
FRAUDAR, the results are generally similar. In contrast, SPOKEN shows slightly worse
performance under this additional camouflage.

To show that FRAUDAR is effective both at catching fraudulent users accounts as
well as fraudulent objects, we next separately evaluate the fraud detection of both fake
users and fake targets using F measure. The basic experimental setup is the same as
before, with the density of the fraudulent blocks now fixed to 0.03. In Figure 4(b), the
bar plots are shown for the comparison. “User wise” (red) denotes the F measure of the
detecting fake users, and “target wise” denotes the F measure of detecting fake target
nodes. We see that, in general, accuracy is high and fairly similar, but the performance
in detecting fake users is slightly higher than that of detecting products.

5.3. Q3. Effectiveness on Real Data

In this section, we verify that FRAUDAR accurately detects a large block of fraudulent
accounts in the Twitter follower–followee graph, as verified by hand labeling and by
clear signs of fraud exhibited by a majority of the detected users. Indeed, a majority of
the detected accounts had tweets advertising follower-buying services, and the tweets
had not been removed or the accounts suspended for the 7 years since the data were
collected. Figure 1(d) shows a sample fraudster caught by FRAUDAR.

The Twitter graph we use contains 41.7 million users and 1.47 billion follows; it was
extracted in July 2009 and first used in Kwak et al. [2010]. On this graph, FRAUDAR
detected a dense subgraph of size 4,031 followers by 4,313 followees. This subgraph is
extremely dense, with 68% density, which is highly suspicious in itself.

To further investigate this block, we randomly sampled 125 followers and 125 fol-
lowees in the block detected by FRAUDAR for hand labeling to determine how many of
them appear fraudulent. To do this, we labeled which users were fraudulent based on
the following characteristics of their profile data, chosen based on established criteria
in the literature [Shah et al. 2014] summarized below.

—links on profile associated with malware or scams
—clear bot-like behavior (e.g., replying to large numbers of tweets with identical

messages)
—account deleted
—account suspended

For comparison, we also construct two control groups of size 100 containing users that
were not detected by the algorithm. The first control group contains randomly selected
non-detected users. For the second (degree-matched) control group, we constructed it
to match the follower count of users in the detected group; we do this by repeatedly
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Fig. 4. (a) FRAUDAR outperforms competitors in multiple settings. Accuracy of fraud detection on Amazon
data in the experiment with “reverse camouflage” (edges from honest users to fraudulent products). (b)
FRAUDAR has similar and high accuracy both in detecting fraudulent users and fraudulent customers.
Comparison of accuracy on fake users and targets under four different camouflage attacks.

selecting a random detected user, and then finding another non-detected user who has
at most 10% bigger or smaller follower count. During the labeling process, we shuffled
the detected users with the control groups randomly and hid group memberships from
labelers, labeling users in a “blind” manner.

Additionally, we also check and report how many of these users have Tweets con-
taining the URLs of two known follower-buying services, TweepMe and TweeterGetter,
showing that they had advertized these follower-buying services through tweets.

Note that this entire labeling process used only profile and tweet data and not
follower–followee data, whereas our algorithm uses only follower–followee data, so the
labeling is a fair estimate of the algorithm’s accuracy. We present two pieces of evidence
that strongly indicates fraud in the detected group. The strongest evidence concerns the
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Fig. 5. FRAUDAR detects a large, clearly fraudulent block in Twitter. The bars show the fraction of detected
and control group accounts who were found to use known follower-buying services, TweepMe and Tweeter-
Getter, or were deleted or suspended. More than half the detected followers fell into at least one of these
categories. In comparison, the control groups had much less detected fraud.

Fig. 6. Follower-buying services: a large fraction of detected accounts use TweepMe (bottom) or TweeterGetter
(middle, top). Both are follower-buying services, as can be seen from the banners.

extremely large percentage of users with tweets advertising TweepMe or Tweetergetter,
two known follower-buying services (the banners in Figure 6 show clearly that these
are follower-buying services). As shown in Figure 1(c), among the group of followers
in the block detected by FRAUDAR, 62% of users had tweets advertizing these two
services; this number was 42% among the followees detected by FRAUDAR.

In contrast, in the control groups, there were no mentions of TweepMe and very few
mentions of TweeterGetter, as shown in Figure 5. Figure 5 shows the breakdown of
our detected (red) and control (blue) groups in terms of deleted and suspended users,
and how many users had tweets advertising TweepMe and TweeterGetter. Note that
the slightly lower percentages of TweepMe and TweeterGetter in this figure (41% of the
detected followers, and 26% for the detected followees) are because Figure 1 ignores
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Fig. 7. FRAUDAR runs in near-linear time: the curve (blue) shows the running time of FRAUDAR, compared
to a linear function (black).

deleted, protected, and suspended accounts, for which profile and tweet information
were unavailable, making it impossible to determine whether follower-buying services
were present. Given the sparsity of TweepMe and TweeterGetter in the control groups,
we see that the detected users are likely characterized by a large block of users using
these and possibly other follower-buying services, resulting in a dense block.

Second, we used our hand labeling using the above criteria to determine how many
of each group appear either fraudulent or consist of suspended or deleted accounts.
57% of the detected followers and 40% of the followees were labeled as fraudulent,
deleted, or suspended accounts, but much fewer in the control groups, with 25% for the
degree-matched control group, and 12% for control group with no condition. Thus, both
these results support the effectiveness of FRAUDAR in detecting fraudulent users in
the real-world graphs.

5.4. Q4. Scalability

Figure 7 shows the near-linear scaling of FRAUDAR’s running time in the number of
edges. Here, we used the Trip Advisor dataset, and subsampled user nodes in propor-
tions of 0.70, . . . , 0.712. Slopes parallel to the main diagonal indicate linear growth.

6. CONCLUSION

In this article, we propose FRAUDAR, a fraud detection algorithm that provably bounds
the amount of fraud adversaries can have, even in the face of camouflage. This problem
has applications to fraud detection in a wide variety of social network settings, particu-
larly in adversarial settings, such as detecting purchased follows on Twitter, fake likes
on Facebook, and rating manipulation on rating platforms. Our main contributions are
as follows.

—Metric: we propose a novel family of metrics that satisfies intuitive “axioms” and has
several advantages as a suspiciousness metric.

—Theoretical Guarantees: we provide theorems (see Theorem 4.3 in Section 4.4 and
Theorem 4.5 in Section 4.6) on how FRAUDAR gives a provable upper bound on
undetectable fraud. We also prove that our proposed metric is camouflage-resistant.

—Effectiveness: FRAUDAR was successfully applied on real-world graphs on fraud
attacks with various types of camouflage, and outperformed the competitor. It also
detected a large block of fraudulent activity in the Twitter follower–followee graph.

—Scalability: FRAUDAR runs near-linearly in the input size (see Figure 7).
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However, we believe there are still many directions for possible extension of this work.
Among others, an interesting problem is how to incorporate temporal information or
other additional features, possibly based on the intuition for fraudulent clusters tend to
appear in short bursts; this would greatly improve the algorithm’s ability to distinguish
between honest but high-degree clusters and truly fraudulent clusters. An interesting
theoretical direction would be to more carefully characterize the space of objective
functions that can be efficiently approximated, as well as better understanding when
this can be done with theoretical guarantees, possibly expanding the space of metrics
g that we can make use of.

APPENDIXES

A. INTERPRETATION OF SIZE NORMALIZATION APPROACHES

In this appendix, we justify the choice of normalization approach in the metric
g(S) = f (S)

|S| , from the perspective that it approximately normalizes f (S) by its standard
deviation, assuming a simplified setting.

For simplicity, set node weights to zero and all edge weights cij = 1. Then, f (S) is the
number of edges in the induced subgraph of S. Further assume an Erdos Renyi like
model where each possible edge in the bipartite graph is independently present with
probability p. Recalling that S = A ∪ B, this induced subgraph has |A| · |B| possible
edges, each present with probability p. Thus, f (S) follows a binomial distribution
Binom(|A| · |B|, p), which has standard deviation

√
|A| · |B| · p(1 − p). Assuming |A| and

|B| are both roughly linear in |S| (which occurs if the sizes |A| and |B| and close to one
another), this standard deviation is linear in |S| as well. Summarizing our discussion
so far, as |S| grows, the standard deviation of f (S) scales approximately linearly in |S|,
so that normalizing by |S| can be interpreted as normalizing by the standard deviation
of f (S).

Since the standard deviation we computed is also proportional to
√|A| · |B|, this

suggests
√|A| · |B| as a possible alternative normalization scheme, i.e., using the metric

g̃(S) = f (S)√|A| · |B| .

While there may be cases where this metric is successful, this metric is much less
robust against high-degree nodes, as we next show. Note that degree distributions in
real graphs are known to be highly skewed [Strogatz 2001]; in the extreme, Bhamidi
et al. [2015] found that in certain large Twitter graphs, the largest degree nodes may
be connected to a constant fraction of the number of nodes in the graph, in some cases
exceeding half the total number of nodes. Hence, given a high degree node of degree
cn, setting S as this node and its neighborhood gives a value of

g̃(S) = cn√
1 · cn

= √
cn, (4)

proportional to
√

n. Note that if we instead consider a set S whose nodes all have
average degree bounded by d, we have

f (S)√|A| · |B| ≤ dmin(|A|, |B|)√
min(|A|, |B|)2

= d. (5)

Hence, consider a large, sparse graph. Due to the presence of skewed degree distri-
butions [Strogatz 2001], we expect the vast majority of nodes to have relatively low
average degree, which we model as being bounded by a constant d. As Bhamidi et al.
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[2015] suggests, we may additionally expect a small number of very high degree nodes
(with degree cn). As we have shown, the value of g̃(S) on the maximum degree node
and its neighborhood is proportional to

√
n, while g̃(S) on typical sets S involving the

majority of low average degree nodes will be close to bounded by d, which remains
constant as n grows.

This suggests that in such cases, this metric is prone to attaining its maximum value
when either A or B is a single node. In contrast, the normalization in the original metric
g(S) = f (S)

|S| is much less likely to pick up single nodes: e.g., if |A| = 1, the value of g(S)
cannot exceed |B|

1+|B| < 1, an average degree of <1 that is likely to be exceeded by other
subgraphs.

In conclusion, g(S) can be interpreted as using a normalization term:

—Scales linearly with the set size: which, under simplified settings, can be seen as
normalizing by the standard deviation.

—Introduces a bias in favor of balanced sets A and B: in particular avoiding the “de-
generate” case of catching sets consisting of a single high degree node (i.e., |A| = 1
or |B| = 1).

B. DETAILED ANALYSIS ON THE ACCURACY OF FRAUDAR

In this section, we provide a detailed analysis on the accuracy of FRAUDAR. Specif-
ically, we give (1) necessary conditions and (2) sufficient conditions for FRAUDAR to
detect fraudsters perfectly (i.e., with 100% precision and recall), as well as (3) necessary
conditions and (4) sufficient conditions for FRAUDAR to detect at least one fraudulent
node correctly.

We introduce the concept of coreness, which is used in the following analysis. Con-
sider a subset S of V. The weight of each node i in S, denoted by wi(S), is defined as
the sum of suspiciousness assigned to node i in the subgraph of G induced by S, as
in Definition 1. Based on this, we define the coreness of each node i, denoted by ri, in
Definition 2.

Definition 1 (Weight in a Subgraph). Let S be a subset of V. For each node i ∈ S,
wi(S) indicates the sum of suspiciousness assigned to i in the subgraph induced by S.
That is,

wi(S) := ai +
∑

( j∈S)∧((i, j)∈E)

cij +
∑

( j∈S)∧(( j,i)∈E)

c ji,

where ai(≥ 0) indicates the weight of node i and cij(>0) indicates that of edge (i, j) as
in (2).

Definition 2 (Coreness). Each node i ∈ V has coreness ri if and only if (1) there exists
a subset S ⊂ V such that i ∈ S and for every node j ∈ S, w j(S) ≥ ri; and (2) there does
not exist any subset S ⊂ V such that i ∈ S and for every node j ∈ S, w j(S) > ri.

Having defined weight and coreness, we show the relation between them and FRAU-
DAR. The relation is used in the following analysis. Specifically, we prove that in
each iteration of FRAUDAR, a node with minimum weight in the current subgraph is
removed. We also prove that nodes are removed in a non-decreasing order of coreness.

In the rest of this section, we let πt where t ∈ {1, 2, . . . , n+ m} be the node removed in
the tth iteration of Algorithm 1. We also let X0 = V and let Xt = {πh : 1 ≤ t < h ≤ n+m}
be the set of nodes removed in the tth or later iterations, as in Algorithm 1. In other
words, each node πt belongs to Xt−1 but not to Xt. We use π−1

i ∈ {1, 2, . . . , n + m} to
indicate the iteration in Algorithm 1 when node i ∈ V is removed.
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LEMMA B.1. In each iteration of Algorithm 1, a node with minimum weight in the
current subgraph is removed. That is,

wπt (Xt−1) ≤ w j(Xt−1), ∀ j ∈ Xπt−1,∀t ∈ {1, 2, . . . , n + m}. (6)

PROOF. This is reduced from the following condition in line 5 where i∗ = πt:

f (Xt−1) − wi∗ (Xt−1)
|Xt−1| − 1

= g(Xt−1 \ {i∗}) ≥ g(Xt−1 \ { j}) = f (Xt−1) − w j(Xt−1)
|Xt−1| − 1

,∀ j ∈ Xt−1.

LEMMA B.2. The coreness of the node removed in each iteration of Algorithm 1 is equal
to the maximum weight of nodes removed in the current or previous iterations. That is,

rπt = max{wπh(Xh−1) : 1 ≤ h ≤ t}, ∀t ∈ {1, 2, . . . , n + m}. (7)

PROOF. Let w∗
t = max{wπh(Xh−1) : 1 ≤ h ≤ t}. We prove rπt = w∗

t by showing that
rπt ≥ w∗

t and rπt ≤ w∗
t . For each iteration t, let h∗ ≤ t be the iteration where wπh∗ (Xh∗−1) =

w∗
t . Then, in Xh∗−1, which includes πt, every node has weight at least wπh∗ (Xh∗−1) by

Equation (6). Thus, by the definition of coreness, rπt ≥ wπh∗ (Xh∗−1) = w∗
t . We also

prove rπt ≤ w∗
t by showing that any subset of V where every node has weight strictly

greater than w∗
t does not include πt. Assume that such a subset S ⊂ V exists, and

let h′ = min{h : πh ∈ S} be the first iteration when a node in S is removed. From
S ⊂ Xh′−1, we have wπh′ (Xh′−1) ≥ wπh′ (S) > w∗

t . Since for every t′ ≤ t, wπt′ (Xt′−1) ≤ w∗
t by

the definition of w∗
t , we have t < h′ = min{h : πh ∈ S}, and thus πt /∈ S. Thus, by the

definition of coreness, rπt ≤ w∗
t . From rπt ≥ w∗

t and rπt ≤ w∗
t , we have rπt = w∗

t .

LEMMA B.3. In Algorithm 1, nodes are removed in a non-decreasing order of coreness,
i.e.,

if t < h, then rπt ≤ rπh, ∀t, h ∈ {1, 2, . . . , n + m}.
PROOF. This lemma follows from Lemma B.2.

Assume V is divided into the set of fraudulent nodes F and the set of honest nodes
F̄ = V \ F . We say FRAUDAR detects fraudsters “perfectly” if it returns exactly F .
We give a necessary condition (Theorem B.4) and a sufficient condition (Theorem B.5)
for this perfect detection. Let Xt∗ be the set returned by FRAUDAR. In Theorem B.5,
if (C1) and (C2) are met Xt∗ ⊂ F holds and fraudulent nodes are detected with 100%
precision. If (C1) and (C3) are met, Xt∗ ⊃ F holds and 100% recall is achieved. If all
conditions are met, Xt∗ = F holds and both 100% precision and recall are achieved.

THEOREM B.4 (NECESSARY CONDITION FOR PERFECT DETECTION). Algorithm 1 returns F
only if all fraudulent nodes have higher or equal coreness than honest nodes. That is,

∀u ∈ F ,∀v ∈ F̄ , ru ≥ rv.

PROOF. Assume there exist u ∈ F and v ∈ F̄ such that ru < rv. By Lemma B.3, we
have π−1

u < π−1
v . Then, for every t < π−1

v , we have v ∈ Xt, and for every t ≥ π−1
v , we

have u /∈ Xt. Thus, F is not included in {Xt : 0 ≤ t ≤ n + m}, among which Algorithm 1
returns one. Hence, such u ∈ F and v ∈ F̄ should not exist for Algorithm 1 to return
F .

THEOREM B.5 (SUFFICIENT CONDITION FOR PERFECT DETECTION). Let r∗
F̄ = {rv : v ∈ F̄} be

the maximum coreness among honest nodes. Algorithm 1 returns F if all the following
conditions are met: (C1) all fraudulent nodes have strictly higher coreness than honest
nodes, i.e., ∀u ∈ F , ru > r∗

F̄ , (C2) fraudulent nodes have density strictly higher than r∗
F̄ ,

i.e., g(F) > r∗
F̄ , and (C3) all proper subsets of F have strictly lower density than F , i.e.,

∀S � F , g(S) < g(F).
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PROOF. By (C1) and Lemma B.3, there exists t ∈ {1, 2, . . . , n + m} where Xt = F . By
(C3), for every h > t, g(Xh) < g(Xt) since Xh is a proper subset of Xt = F . Moreover, for
every h < t, g(Xh) < g(Xt) = g(F) since

g(Xh) = f (|F |) + ∑t
s=h+1 wπs (Xs−1)

|F| + t − h
≤ f (|F |) + ∑t

s=h+1 rπs

|F| + t − h

≤ f (|F |) + (t − h)r∗
F̄

|F| + t − h
<

f (|F |) + (t − h)g(F)
|F| + t − h

(By (C2))

= f (|F |) + (t − h) f (F)/|F|
|F| + t − h

= f (F)
|F| = g(F).

Hence, F = Xt = arg maxXh∈{X0,...,Xm+n} g(Xh), which is returned by Algorithm 1.

On the other hand, we say FRAUDAR detects fraudsters “marginally” if Xt∗ , the set
returned by Algorithm 1, includes at least one fraudulent node (i.e., Xt∗ ∩ F �= ∅). We
give a necessary condition (Theorem B.6) and a sufficient condition (Theorem B.7) for
this marginal detection.

THEOREM B.6 (NECESSARY CONDITION FOR MARGINAL DETECTION). Let r∗
F = {rv : v ∈ F} be

the maximum coreness among fraudulent nodes. Likewise, we define r∗
F̄ = {rv : v ∈ F̄}

for honest nodes. If we let Xt∗ be the set returned by Algorithm 1, Xt∗ ∩ F �= ∅ only if
r∗
F ≥ r∗

F̄/2. That is, r∗
F ≥ r∗

F̄/2 is a necessary condition for FRAUDAR to return at least
one fraudulent node.

PROOF. By Lemma B.1 and Lemma B.2, there exists t′ ∈ {0, 1, . . . , n + m} such that
every node in Xt′ has weight at least r∗

F̄ (i.e., ∀i ∈ Xt′ , wi(Xt′) ≥ r∗
F̄ ). Then,

g(Xt∗ ) ≥ g(Xt′) = f (Xt′)
|Xt′ | ≥

∑
i∈Xt′

wi(Xt′)/2

|Xt′ | ≥
∑

i∈Xt′
r∗
F̄/2

|Xt′ | = r∗
F̄/2.

From this, it follows that every nodes in Xt∗ has weight at least r∗
F̄/2. That is,

wi(Xt∗ ) ≥ r∗
F̄/2, ∀i ∈ Xt∗ (8)

This is since, otherwise,

g(Xt∗+1) = f (Xt∗ ) − wπt∗+1 (Xt∗)
|Xt∗ | − 1

>
f (Xt∗) − r∗

F̄/2

|Xt∗ | − 1
≥ f (Xt∗ ) − g(Xt∗)

|Xt∗ | − 1
≥ g(Xt∗ ),

which is a contradiction because Xt∗ = arg maxXt∈{X0,...,Xm+n} g(Xt).
Since r∗

F is the maximum coreness among fraudulent nodes, every Xt ∈ {X0, . . . ,Xm+n}
including at least one fraudulent node (i.e., Xt ∩F �= ∅) has a node with weight at most
r∗
F . Thus, Xt∗ ∩F �= ∅ can be true only when r∗

F ≥ mini∈Xt∗ wi(Xt∗) ≥ r∗
F̄/2 by Equation (8).

Hence, r∗
F ≥ r∗

F̄/2 is a necessary condition for Xt∗ ∩ F �= ∅.

THEOREM B.7 (SUFFICIENT CONDITION FOR MARGINAL DETECTION). Let g∗
F = maxS⊂F g(S)

be the maximum density achievable by subsets purely consisting of fraudulent nodes.
Likewise, we define g∗

F̄ = maxS⊂F̄ g(S) for honest nodes. If we let Xt∗ be the set returned
by Algorithm 1, Xt∗ ∩ F �= ∅ if g∗

F > 2g∗
F̄ . That is, g∗

F > 2g∗
F̄ is a sufficient condition for

FRAUDAR to return at least one fraudulent node.

PROOF. Let g∗ = maxS⊂V g(S) be the maximum density. If g∗
F > 2g∗

F̄ , we have g∗ ≥
g∗
F > 2g∗

F̄ . By Theorem 4.3, g(Xt∗ ) ≥ g∗/2 > g∗
F̄ . Hence, Xt∗ � F̄ and thus Xt∗ ∩F �= ∅.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 44, Publication date: June 2017.



44:24 B. Hooi et al.

REFERENCES

Leman Akoglu, Rishi Chandy, and Christos Faloutsos. 2013. Opinion fraud detection in online reviews by
network effects. In Proceedings of the 7th International AAAI Conference on Weblogs and Social Media.

Alex Beutel, Kenton Murray, Christos Faloutsos, and Alexander J. Smola. 2014. Cobafi: Collaborative
Bayesian filtering. In Proceedings of the 23rd International Conference on World Wide Web. Interna-
tional World Wide Web Conferences Steering Committee, 97–108.

Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. 2013. Copy-
catch: Stopping group attacks by spotting lockstep behavior in social networks. In Proceedings of the
22nd International Conference on World Wide Web. International World Wide Web Conferences Steering
Committee. 119–130.

Shankar Bhamidi, J. Michael Steele, Tauhid Zaman, and others. 2015. Twitter event networks and the
superstar model. The Annals of Applied Probability 25, 5 (2015), 2462–2502.

Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding the detection of fake
accounts in large scale social online services. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation.

Moses Charikar. 2000. Greedy approximation algorithms for finding dense components in a graph. In Ap-
proximation Algorithms for Combinatorial Optimization. Springer, 84–95.

Corinna Cortes, Daryl Pregibon, and Chris Volinsky. 2001. Communities of Interest. Springer.
Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti, Naveen Kumar Sharma, Gautam Korlam, Fabricio

Benevenuto, Niloy Ganguly, and Krishna Phani Gummadi. 2012. Understanding and combating link
farming in the twitter social network. In Proceedings of the 21st International Conference on World Wide
Web. ACM, 61–70.

Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2011. Evaluating cooperation in com-
munities with the k-core structure. In Proceedings of the 2011 International Conference on Advances in
Social Networks Analysis and Mining (ASONAM). IEEE, 87–93.

Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, and Dongyan Xu. 2015. LEAPS: Detecting
camouflaged attacks with statistical learning guided by program analysis. In Proceedings of 2015 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, 57–68.
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