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ABSTRACT

Semi-supervised node classification on graphs is a complex inter-
play between graph structure, node features and class-assortative
(homophilic) properties, and the flexibility of a model to capture
these nuances. Modern datasets used to push the frontier for such
tasks exhibit diverse properties across these aspects, making it chal-
lenging to study how these properties individually and jointly influ-
ence performance of modern methods like graph neural networks
(GNNs). In this work, we propose an intuitive and flexible scale-
free graph generation model, CaBaM, which enables simulation of
class-assortative and attributed graphs via thewell-known Barabasi-
Albertmodel.We show empirically and theoretically how ourmodel
can easily describe a variety of graph types, while imbuing the gen-
erated graphs with the necessary ingredients for attribute, topology,
and label-aware semi-supervised node-classification. We hope our
work illustrates the need for graph generation and provides a step-
ping stone compensating for the lack of manipulability offered
in common public graph dataset benchmarks. We also hope this
inspires future work towards (a) more principled evaluation and
study of GNNs, specifically their sensitivity to varying assortativity
and attribute distributions, and (b) development of GNN architec-
tures which facilitate graph context-awareness in line with these
properties.
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1 INTRODUCTION

Semi-supervised learning on graphs (SSL) is a well-known task,
which has gained renewed interest in recent yearswith the advances
of neural node embedding methods, particularly graph neural net-
works (GNNs) [14, 15, 22, 33, 39, 40, 45]. In modern instances of such
tasks, one is typically given a graph G(V, E) (with adjacency A),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MLG ’20, August 24, 2020, San Diego, CA

© 2020 Association for Computing Machinery.
ACM ISBN 978-X-XXXX-XXXX-X/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

node features H and labels 𝑦 (potentially many of which are unde-
fined). The task is to correctly infer the status of nodes which have
undefined labels. Modern graph-based machine learning methods
for this problem generally involve learning an embedding function
𝑓 : V → R𝑑 which maps each node into a high-dimensional space,
where it can be subsequently classified. Most advances in recent
years on this task have arisen from various novelties in parame-
terizing and learning 𝑓 . While understanding of the importance of
architectural, loss-based and situational choices for 𝑓 has improved
substantially in recent years [27, 43], there is comparatively little
work in understanding the importance of G (A), H and 𝑦 to the
performance of various methods.

This is in large part due to convention and limitations in exist-
ing benchmark datasets for evaluating performance on this task.
The graph-based machine learning community commonly utilizes
several datasets to demonstrate outperformance of a model. These
benchmark datasets include citation networks (Cora, Citeseer
[22]), protein-protein interactions (PPI [14]), social networks (Flickr,
BlogCatalog [18]), air traffic (Air-USA [42]) and more. Recently,
[17] curated and released several additional benchmark datasets to
improve representation of other domains and standardize method
comparisons. Nonetheless, these benchmark datasets have non-
homogeneous properties that are not well-characterized or typi-
cally considered, making the performance analysis between differ-
ent methods and graph types challenging to analyze. While the
graphs may have similar structure in a skewed, power-law topol-
ogy sense, they may have (a) very different attribute distributions
across nodes (conditional on class), and (b) varying assortative (ho-
mophilic) tendencies between nodes of the same class. Both of these
could influence the inherent difficulty of the learning task, and limit
or facilitate different models.

To facilitate this analysis, we turn to graph generation models, a
staple in the network science community [4, 9, 23, 25, 34, 36, 37, 41].
Graph generation models aim to simulate graphs which match (in
a statistical sense) various observed processes. For example, [4, 25]
aim to model scale-freeness and power-law degree distribution
evident in many social networks, [36] aims to preserve local and
global topological motifs, and [9] produces random graphs with
interesting mathematical properties. Unfortunately, most of these
models only generate topology and not attributes, with the excep-
tion of [34, 37], which are used in the context of mimicking a given
graph, rather than flexibly manipulating the generation process to
handle different graph settings. None of the above models explicitly
facilitates analysis of the previously mentioned aspects.

In lieu, we propose CaBaM. Our work builds on the Barabasi-
Albert (BA) [4] generation model for generating scale-free networks
via preferential attachment. Since the model only produces G (A),
we extend it in two key ways which facilitate investigation of SSL

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


MLG ’20, August 24, 2020, San Diego, CA N. Shah

methods: by allowing nodes to flexibly (a) belong to classes, and
be associated with the associated (arbitrary) attribute distribution,
(b) vary their class-assortativity (for example, based on degree),
thereby enabling flexible designation of H and 𝑦 choices. Moreover,
we show empirically and theoretically both that our extensions
preserve the natural degree distribution of the original BA model,
and that they have derivable class-assortativity dynamics in terms
of the expected number of intra-class edges and inter-class edges
in the generated graph.

We hope our model helps facilitate analysis of strengths and
weaknesses of relative graph-based machine learning methods and
the impact of graph structure, attribute distribution and assortativ-
ity on performance, particularly across GNN models which have
become prominent in recent years. Moreover, we hope that graph
generation via our model appeals to practitioners and researchers
who work on development of GNNs to evaluate their models on
well-specified and importantly, tunable benchmark datasets. We
make our code and model publicly available at https://github.com/
nshah171/cabam-graph-generation.

2 RELATEDWORK

Wediscuss relatedwork in two settings: graph-based semi-supervised
learning, and graph generation models.

Graph-based semi-supervised learning (SSL). Graph-based
SSL has a rich history, stemming from early methods such as la-
bel spreading [48], label propagation [49], belief propagation [46],
and various random-walk and guilt-by-association approaches [24],
many of which utilize only graph structure and no attributed in-
formation. It has many applications, including stereo matching
in vision [38], top-𝑛 recommendation [13], fraud and misinforma-
tion detection [1, 12, 32], general node classification tasks [45] and
more. In recent years, node representation learning techniques
[11, 33, 39, 45] and more recently convolutional graph neural net-
works (GNNs) [14, 22, 40, 43] have dominated the landscape, achiev-
ing remarkable performance by proposing neural architectures for
the SSL task. Unlike our work-in-progress, most recent works in
this space focuses on model architecture improvements, rather than
building understanding of model sensitivity to data. However, some
touch on relevant spaces: [35, 43] give careful analysis of GNN
expressivity given the aggregation operator. [2, 3] aim to incor-
porate flexible attention to varying 𝑘-hop graph contexts during
representation learning. [42] explicitly incorporates node degree
information into embeddings. [47] bootstraps node classification
with self-supervised edge prediction, inherently leveraging struc-
tural predictability in the graph. However, none of these works
investigate GNN performance contextually across various class
attribute and assortativity settings.

Graph Generation Models. Numerous graph generation mod-
els have been proposed to capture, generate, and simulate net-
work structure. [9] introduce the Erdos-Renyi random graph model,
which generates graphs with independently drawn edges. [23] pro-
poses a block, two-level extension which can be tuned to capture
real-world degree distributions and clustering coefficients. Several
other works [19, 31] extend Erdos-Renyi-inspired models to non-
binary cases and multi-view graph settings. [25] proposes a model
to generate edge structure via self-similarity induced by Kronecker

products, and infer seed matrices given an input graph. [5, 41] en-
able production of various graphs with prescribed degree sequences
which meet certain structural properties, like existence of a hub
or connected components. [36] proposes an approach to generate
graphs using concepts from context-free grammars. All the above
methods are applicable only to graph data without attributes. [4]
proposes a preferential-attachment model, by which nodes join a
graph and attach to other nodes with higher degree with a higher
probability. [21, 26, 34] discuss models which enable inference and
mimicking connectivity given attributes from an input graph, but
not flexible simulation of a new graph. The graph generation pro-
cess discussed in our work differs from these by focusing on flexible
simulation of graphs with class-imbued nodes and attributes with-
out an input graph to mimic.

Several works also tackle producing assortativity in generated
graphs, but mainly in the context of joint degree distributions. [30]
discusses this concept: namely, that nodes tend to connect to oth-
ers with similar degrees. [44] produces degree assortativity via an
edge rewiring process from nodes in an existing graph. [28] uses
accept-reject sampling to only keep edges from the model from
[41] which satisfy a binned joint degree distribution. [7] modifies
the Barabasi Albert (BA) model [4] for assortative mixing, but for
degree sequence assortativity (nodes connect to others with simi-
lar degree) and with different motive. Closest to our work is [20],
which studies an extension to the BA model for class-assortativity
(nodes tend to connect to other nodes of the same class) aware
preferential attachment, but differs from ours in both (a) model
setup: their model does not discuss varying specifications of degree-
dependent assortativity within a network, graphs with more than
2 classes, nor node attribute-aware settings, and (b) motivation:
their work exposes the impact of class-assortativity to degree rank-
ings between nodes of two classes, without any consideration of
generation for evaluation of graph neural networks. [3] leverages
[20]’s generation process to examine performance of their own
model under various amounts of assortativity. In the same vein,
our work here aims to provide a standard and general setup for
flexible graph generation for varying numbers of classes, attributes
and assortativity properties to facilitate introspection and analysis
of GNNs and other graph-based SSL models. To provide further
context and motivate these needs, we additionally illustrate huge
differences in properties of benchmark datasets used in such tasks,
which may be of independent interest to practitioners who design
and evaluate such models.

2.1 The case for graph generation

Graphs used for SSL benchmarks share some topological similari-
ties, but have stark differences in their inherent properties which
make comparing and reasoning across SSL-based methods which
implicitly rely on some assumptions on feature distributions and
assortativity challenging. For example, GNNs typically make node-
level label predictions by convolving features from neighboring
nodes and thereby smoothing decision boundaries [14]. Clearly,
these predictions may be impacted by the characteristics of the
node’s feature distribution (impacting variance in the convolution
result), whether the node’s degree is low or high (impacting the size
of the receptive field), and how diverse or homogeneous the node’s

https://github.com/nshah171/cabam-graph-generation
https://github.com/nshah171/cabam-graph-generation


Scale-Free, Attributed and Class-Assortative Graph Generation to Facilitate Introspection of Graph Neural Networks MLG ’20, August 24, 2020, San Diego, CA

Cora CoraML Citeseer Pubmed DBLP Air-USA Flickr BlogCatalog

# Nodes 19,793 2,995 4,230 19,717 17,716 1,190 7,575 5,196
# Edges 146,635 19,311 14,904 108,365 123,450 28,388 487,051 348,682
# Features 8,710 2,879 602 500 1639 238 12,047 8,189
# Classes 70 7 6 3 4 4 9 6

Feature-degree assoc. .628 .594 .524 .668 .571 1.0 .619 .666
Class assortativity .670 .845 .972 .863 .871 .722 .262 .419
Cross-class MMD .233 .102 .151 .156 .070 .491 .023 .139

GCN [22] .404 .834 .876 .841 .834 .510 .197 .504
Table 1: Characteristic differences in properties of commonly used benchmark datasets.

Figure 1: Class-assortativity varies substantially across commonly used graph datasets, and further varies evenwithin datasets

for nodes with different degrees. Boxplots show class-assortativity (y-axis) computed for nodes which are logarithmically

binned by degree (x-axis).

neighborhood (impacting the smoothness of resulting boundaries).
Studying these properties and how they influence various methods
can hopefully lead to further research into, and new insights about
method design, situational relevance and an increased emphasis on
the graph in the context of model architecture.

To illustrate diverse properties across existing datasets, we com-
pute a few properties over a small benchmark suite: we use citation
networks (Cora, CoraML, Citeseer, Pubmed, DBLP), airport traf-
fic (Air-USA), and social networks (Flickr, BlogCatalog). Table
1 details (in addition to summary statistics), three properties which
capture some notable differences across the datasets relating to the
aforementioned properties.

Feature-degree association. We take a simple Random Forest
classifier, and try to predict whether a node’s degree is higher or
lower than the graph’s average degree using the input features. We
use 5-fold cross validation with stratification, reporting the AUC
(area under ROC curve). High numbers imply that features (and
associated classes) are correlated to the graph topology, effectively
creating distinct convolution dynamics for nodes of one class versus
another.

Class assortativity. We count the total number of intra-class
(within one class) and inter-class (between different classes) edges
in the graph and report the intra-class edge fraction

𝑟𝑒𝑤 =
𝑒𝑤

𝑒𝑤 + 𝑒𝑏

where 𝑒𝑤 , 𝑒𝑏 denote intra/inter-class edge counts respectively. This
is effectively a measure of homophily. High values indicate that
most edges in the graph are between nodes in the same class, with
implications in the smoothness of decision boundaries. Low val-
ues indicate that convolution can easily blur decision boundaries
between classes.

Between-class MMD.We report a (simplified) maximum pair-
wisemaximummean discrepancy (MMD) statistic [10] across classes.
We calculate the simplified cross-class MMD as

max
∀𝑥,𝑦∈C

sup (E[𝑥] − E[𝑦])

where E[𝑥] (wlog) refers to the empirical expected value of (unit-
normalized) samples from H in class 𝑥 , and 𝑥,𝑦 are classes in the
set C. This is bounded on [0, 1]. High values generally indicate that
features from classes are more easily separable (i.e. that class 𝑥 and
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Figure 2: Degree distributions for 8 common benchmark datasets. Despite feature and class-assortativity-related differences,

most common benchmark datasets have skewed, power-law-esque degree distributions, making this property desirable for a

graph generator to simulate.

𝑦 have very different feature distributions), whereas low values
indicate less distinction.

As is evident from Table 1, the properties vary considerably
across datasets. Notably, features are perfectly predictive of above-
average degree prediction in Air-USA (but much less so in other
datasets). Citeseer has a markedly high class-assortativity, with
97.2% of the edges in the dataset being intra-class ones, while Flickr
only has 26.2% such edges, suggesting huge differences in assorta-
tivity between the two datasets.

Figure 1 further shows that assortativity can vary significantly
even within a graph for nodes with different degrees. MMD differ-
ences suggest that features across classes from Flickr and DBLP
are less discriminating, whereas they are much more so for Air-
USA and Cora. Despite all these variations, Figure 2 shows some
marked topological similarities across datasets. Namely, all of them
have skewed degree distributions, resembling power-law-esque
or lognormal distributions. As numerous works [6, 8, 29] discuss,
such degree distributions are commonly observed in empirical,
and especially social, datasets, where preferential attachment-like
phenomena are common and rich-get-richer effects prevail. In the
table, we further show standard 2-layer GCN [22] model perfor-
mance in terms of accuracy (trained for 200 epochs with a 10/10/80
train/validation/test split, 0.2 dropout, 5e-4 weight decay, 128 hid-
den units and Adam optimizer) simply to illustrate the marked dif-
ferences in performance of one such GNN model on these datasets.
One can observe the performances are not trivially correlated with
the above-mentioned metrics in Table 1; it is exactly this opacity
we hope that graph generation can help untangle.

We note that our work here does not aim to address all of the
above points and reconcile differences across datasets, but rather
aims to expose the significant variations across these datasets which
is typically ignored, encourage the reader to consider how these
variations may influence downstream SSL model performance, and
consider how theymay be systematically studied.We propose graph
generation as a tool to enable this systematic study.

3 GRAPH GENERATIONWITH CABAM

Our expository analysis in the previous section shows that while
most realistic graph datasets used for SSL tasks are topologically
similar (at least in the degree distribution context), they vary con-
siderably in their attribute/feature distributions and assortativity
properties. Thus, we consider producing a graph generation model
which is not only (a) able to produce graphs with power-law degree
distribution, but also (b) is flexible in class and feature distributions
for nodes, and (c) allows variation in class-assortativity. We focus
on the Barabasi Albert (BA) model, which is simple, analytically
shown to produce power-law degree distributions, and is appealing
due to its explicit time-aware and preferential generative process.
For context, the BA model [4] proceeds as follows:

(1) Graph initialization. Initialize a graph G(V, E) with 𝑚

nodes and no edges.
(2) Growth. At each timestep 𝑡 , add one node 𝑣 with𝑚 edges

to existing nodes. The probability of connecting to node𝑤
is given by

𝑃𝑣→𝑤 =
𝑘𝑤∑

𝑦∈V 𝑘𝑦
(1)

where 𝑘𝑤 indicates𝑤 ’s degree (wlog).
Via this preferential attachment form, the BA model has been

shown to have a degree distribution 𝑃 (𝑘) ∝ 𝑘−3, and considerable
past analysis has been done on the model [4, 16], making it appeal-
ing for use. However, the original BA model does not account for
any node classes or attributes, nor their assortativity.

Given these shortcomings, we propose our extended model,
CaBaM. Our model has the following generative process:

(1) Definitions.Define amultinomial class distributionM over
the |C| classes. For each class 𝑐 ∈ C, define a class-specific
distribution D𝑖 , such that a node 𝑣 belonging to class 𝑐 will
have its features ℎ𝑣 ∼ D𝑐 . Lastly, define 𝑝𝑐 ∈ [0, 1] as a
within-class assortativity factor.



Scale-Free, Attributed and Class-Assortative Graph Generation to Facilitate Introspection of Graph Neural Networks MLG ’20, August 24, 2020, San Diego, CA

(2) Graph initialization. Initialize a graph with𝑚 nodes and
no edges. For each node, draw class and attributes as per (1).

(3) Growth.At each timestep 𝑡 , add one node 𝑣 . Assign it a class
𝑐 and draw its attributes as per (1). Attach it to𝑚 existing
nodes, with the probability of connecting to a node𝑤 as

𝑃𝑣→𝑤 =
𝑘𝑤 · (𝑞 · 𝑝𝑐 + (1 − 𝑞) · (1 − 𝑝𝑐 ))∑

𝑦∈V
(
𝑘𝑦 · (𝑞 · 𝑝𝑐 + (1 − 𝑞) · (1 − 𝑝𝑐 ))

) (2)

where 𝑞 = 1(𝑐𝑤 = 𝑐𝑣), an indicator reflecting whether the
two nodes belong to the same class.

While simple, this model admits a number of desirable properties.
Firstly, it generates scale-free graphs with power-law degree distri-
butions. Secondly, it allows flexible specification of class-conditional
node attributes, with the choice of D𝑐 left open. Finally, it allows
flexible specification of class-assortativity via 𝑝𝑐 . In fact, in some
cases, 𝑝𝑐 need not be a constant, but can be a function defined on
each node (for example, based on its degree to emulate effects like
in Figure 1) while still retaining all these properties.

Our model admits the following theoretical analysis:

Theorem 3.1 (Degree distribution). As 𝑡 → ∞, a graph G
generated by CaBaM has a power-law degree distribution with 𝑃 (𝑘) ∝
𝑘−3 and minimum degree𝑚, given by

𝑃 (𝑘) = 2 ·𝑚 · (𝑚 + 1)
𝑘 · (𝑘 + 1) · (𝑘 + 2) (3)

if either (a) 𝑝𝑐 is a constant in [0, 1], or (b) E[𝑞] = 1/2.

Proof. Let 𝑔 = E[𝑞], the probability of a new node 𝑣 and an
existing node 𝑤 being of the same class. Then, the change in the
degree of a node with degree 𝑘𝑤 can be written as

𝑑𝑘𝑤

𝑑𝑡
=𝑚 · 𝑘𝑤 · (𝑔 · 𝑝𝑐 + (1 − 𝑔) · (1 − 𝑝𝑐 ))∑

𝑦∈V
(
𝑘𝑦 · (𝑔 · 𝑝𝑐 + (1 − 𝑔) · (1 − 𝑝𝑐 ))

)
by taking the expectation over the indicator, and multiplying the
quantity by𝑚 given𝑚 edges added per timestep. Notice that 𝑔 only
depends on the native class distribution and thus does not depend
on 𝑦 ∈ V . If 𝑝𝑐 is a constant, then 𝑔 · 𝑝𝑐 + (1 − 𝑔) · (1 − 𝑝𝑐 ) can be
moved outside the sum, so that 𝑑𝑘𝑤/𝑑𝑡 takes on the form in Eqn.
1. If 𝑝𝑐 is not a constant but a function (for example, depending
on the node 𝑦 ∈ V), then the quantity cannot be moved outside
the sum. However, if 𝑔 = 1/2, then the quantity reduces to 1 even
inside the sum, again yielding the form in Eqn. 1. Next, notice that∑

𝑦∈V 𝑘𝑦 = 2𝑚𝑡 , replacing the degree sum with total edge count.
Thus, we have

𝑑𝑘𝑤

𝑑𝑡
=
𝑘𝑤

2𝑡
=
𝑑𝑡

2𝑡
, so

𝑘𝑤 ∝ 𝑡−1/2

integrating both sides in the last step. Thus, a node’s degree grows
inversely-proportionally to the square-root of time. This leads us
precisely to the degree dynamics of the BA model (see [4]), which
derives the exact degree distribution (and exponent) as above from
this point. Also note that a node must have degree ≥𝑚 given the
growth step. □

Our results shows that if non-constant 𝑝𝑐 is desired, then 𝑔 =

1/2 is mandated. This functionally constrains the choice of M.
If |C| = 2, then M = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ( [1/2, 1/2] suffices. If |C| =

3, then M = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ( [2/3, 1/6, 1/6] suffices. The choice of
parameters given |C| can generally be derived by equating the
algebraic expressions for choosing two intra-class nodes and two
inter-class nodes, and constraining all class probabilities to sum to
1. Formally, the parametric solutions for class probabilities 𝑃1 . . . 𝑃𝑘
are given by

𝑘∑
𝑖=1

𝑃𝑖 = 1 and
𝑘∑
𝑖=1

𝑃2𝑖 = 1/2

Conversely, if a constant 𝑝𝑐 is used, then any well-defined choice
of parameters (𝑃1 . . . 𝑃𝑘 ) which sums to 1 forM suffices.

Theorem 3.2 (Class assortativity). As 𝑡 → ∞, the intra-class

edge fraction 𝑟𝑒𝑤 of a graph G generated by CaBaM is

𝑟𝑒𝑤 =
𝑝𝑒𝑤

𝑝𝑒𝑤 + 𝑝𝑒𝑏
(4)

where

𝑝𝑒𝑤 =

∞∑
𝑘=𝑚

𝑔 · 𝑝𝑐 · (𝑚 + 1)
(𝑘 + 1) · (𝑘 + 2) (5)

𝑝𝑒𝑏 =

∞∑
𝑘=𝑚

(1 − 𝑔) · (1 − 𝑝𝑐 ) · (𝑚 + 1)
(𝑘 + 1) · (𝑘 + 2) (6)

if either (a) 𝑝𝑐 is a constant in [0, 1], or (b) E[𝑞] = 1/2.

Proof. Our derivation relies on the closed-form exact degree-
distribution from Thm. 3.1, thus inheriting its assumptions. The
probability of a link from a newly introduced node 𝑣 to connect to
a degree 𝑘 node is given by

𝑚 + 1
(𝑘 + 1) · (𝑘 + 2) (7)

since the probability of 𝑣 linking to a node with degree 𝑘 is 𝑘
2𝑚𝑡 ,

and we multiply this by the number of nodes with degree 𝑘 , or
𝑡 · 𝑃 (𝑘) (see Eqn. 3) since there are 𝑡 nodes in the graph at time 𝑡 .
The probability of 𝑣 having the same class as the recipient node is
𝑔 = E[𝑞], and the assortativity multiplier probability for that link
is given by 𝑝𝑐 , accounting for the two factors in the numerator of
Eqn. 5. Likewise, the probability of 𝑣 having a different class as the
recipient node is 1 − 𝑔, and the dissortativity multiplier probability
is 1 − 𝑝𝑐 , account for the two factors in the numerator of Eqn. 6.
Summing from 𝑚 . . .∞, 𝑝𝑒𝑤 and 𝑝𝑒𝑏 denote the (unnormalized)
probabilities of 𝑣 making an intra (inter)-class edge, over nodes
with all degrees. Indeed,

∞∑
𝑘=𝑚

𝑚 + 1
(𝑘 + 1) · (𝑘 + 2) = 1

Note that if 𝑝𝑐 is a constant, we can further reduce the (full) form
of Eqn. 4 to

𝑔 · 𝑝𝑐
(𝑔 · 𝑝𝑐 ) + (1 − 𝑔) · (1 − 𝑝𝑐 )

but this cannot be said when 𝑝𝑐 depends on the node. Eqn. 4 nor-
malizes the intra-class probability, yielding the result. □

In summary, ourCaBaMmodel extends the BAmodel to simulate
not only G (A), but also H and 𝑦 while offering flexible designation
of assortativity, while having several useful theoretical guarantees
which can facilitate analysis.
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(a) Degree distribution (b) 𝑝𝑐 = 0.5 (c) 𝑝𝑐 = 0.70 (d) 𝑝𝑐 = 0.99

Figure 3: CaBaM simulated graphs with constant 𝑝𝑐 values. All simulations (estimated with |V| = 10000) obey the same un-

derlying power-law degree distribution (a). (b-d) show graph snapshots at |V| = 75, demonstrating the varying assortative

tendencies with varying constant 𝑝𝑐 .

(a) Degree distribution (b) 𝑝𝑐 (𝑘) = tanh𝑘/30 (c) 𝑝𝑐 (𝑘) = tanh𝑘/15 (d) 𝑝𝑐 (𝑘) = tanh𝑘/5

Figure 4: CaBaM simulated graphs with degree-dependent 𝑝𝑐 values, defined as 𝑝𝑐 (𝑘) = tanh𝑘/𝜏 . All simulations (estimated

with |V| = 10000) obey the same underlying power-law degree distribution (a). (b-d) show graph snapshots at |V| = 75, demon-

strating the varying assortative tendencies with varying choices of temperature 𝜏 which parameterize 𝑝𝑐 .

(a) 𝛼 (𝑝𝑐 = 0.5) (b) 𝑟𝑒𝑤 (𝑝𝑐 = 0.5) (c) 𝛼 (𝑝𝑐 (𝑘) = tanh𝑘/15) (d) 𝑟𝑒𝑤 (𝑝𝑐 (𝑘) = tanh𝑘/15)

Figure 5: CaBaM simulated graphs converge to limit estimates (as per Theorems 3.1-3.2) in both constant (𝑝𝑐 = 0.5, left) and
degree-dependent (𝑝𝑐 (𝑘) = tanh𝑘/15, right) settings. Estimates in both cases depend on graph size and are derived from MLE.

Red lines indicate parameter estimates, and blue, dashed-lines the theoretical limit quantities.

4 EVALUATION

We next evaluate CaBaM’s use in flexibly simulate graphs with
varying properties for investigation. Our results show 3 key points:

• CaBaM produces scale-free graphs which admit a power-law
degree distribution.

• CaBaM can be used to simulate graphs with varying class-
assortativity specifications.

• CaBaM’s generated graphs empirically match the “in-the-
limit” properties with quite small graphs, in practice.

4.1 Experimental Setup

We write our simulation code using Python 3.7, and show graph
visualization with the networkx package. All experiments are

conducted on a single n1-standard-16 Google Cloud Platform
virtual machine.

Unless otherwise specified, we set parameters for CaBaM to
• |V| = 5000 maximum (grow the graph to 5,000 nodes),
• 𝑚 = 5 (initialize graph with 5 nodes, and add 5 edges per
new node),

• 𝑐 = 2 (let nodes belong to two classes)
• M = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 ( [1/2, 1/2]) (let both classes be equally
prevalent)

We show results in two different contexts of 𝑝𝑐 : constant, and
degree-dependant. Constant 𝑝𝑐 implies that 𝑝𝑐 is simply a scalar
in [0, 1] which can be tuned from low-high prioritization of assor-
tativity. For degree-dependence, we use 𝑝𝑐 (𝑘) = tanh𝑘/𝜏 , where
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(a) 𝑝𝑐 (𝑘) = tanh𝑘/15 (b) 𝑝𝑐 (𝑘) = 1 − tanh𝑘/15

Figure 6: CaBaM can generate graphs with custom, degree-

dependent class-assortativity, mimicking real graphs.

𝑘 is a node’s degree, and 𝜏 is a temperature parameter controlling
the steepness of the tanh function. This allows nodes with differ-
ent degrees to have different assortativity behaviors. We note that
any suitably defined function which outputs scalars suitable for
interpretation as probabilities could be used, instead of our choice.

4.2 Power-law degree distribution

Figures 3a and 4a show the degree distributions for 3 constant 𝑝𝑐
and 3 degree-dependant 𝑝𝑐 specifications, respectively. Notice that
the distributions are indistinguishable despite the varying assorta-
tivity properties, which agrees with Theorem 3.1. The power-law
degree distribution exponent 𝛼 is evidently 3.0, showing typical
linear behavior in logarithmic-scales. Figure 5a/c shows that this
approximate characteristic degree exponent is estimated even for
small graphs with hundreds of nodes (along the x-axis), both for
constant and degree-dependent 𝑝𝑐 , respectively – red lines show
maximum likelihood estimates for 𝛼 when fitting the degree distri-
bution on the (growing) graph. and blue (dashed) lines show the
limit quantity according to Theorem 3.1.

4.3 Class-assortativity

Figures 3b-d and 4b-d show visualizations of growing networks
with 3 constant 𝑝𝑐 and 3 degree-dependant 𝑝𝑐 specifications, respec-
tively. The visualization is conducted with the graph at |V| = 75
nodes to prevent overplotting effects. Nodes are colored red or
green according to their class designation. Note that with varying
specifications of 𝑝𝑐 in both cases, we can achieve roughly equally
assortative/dissortative graphs in (b) with roughly equal intra/inter-
class edges, moderately assortative graphs in (c) and highly as-
sortative graphs in (d) while preserving the degree distribution.
These nodes could be further imbued with any class-specific at-
tribute distribution D𝑖 , allowing the simulation of a wide class of
graph types. Figure 5b/d shows that estimated class assortativity
quantities (in red) approximately match the limit quantity from
Theorem 3.2 (in blue, dashed) for small graphs with hundreds of
nodes (along the x-axis), both for constant and degree-dependent
𝑝𝑐 , respectively. Moreover, 6 shows two different parameterizations
of degree-dependent 𝑝𝑐 can yield varying degree-dependent assor-
tativities for simulated graphs, matching observations from Figure
1 on real datasets. Careful designation of these 𝑝𝑐s can yield study
of arbitrarily assortative or dissortative graphs.

5 USAGE IN PRACTICE

We make available code for the model discussed in this work at
https://github.com/nshah171/cabam-graph-generation. While the
theoretical properties regarding degree distribution and assortativ-
ity in the limit discussed in Section 3 hold under fairly loose condi-
tions, it is worth noting that the generative process for CaBaM is
still usable even outside the scope of these conditions to produce
attribute-imbued graphs with varying class-assortativity under a
preferential attachment regime, albeit without “nice results” for
these properties. Arguably, these are not strictly required for graph
generation to usefully facilitate analysis of GNNs; in short, even
without the theoretical underpinnings, the generative process al-
lows reproducible and flexible generation of graphs with various
desiderata, enabling careful empirical analysis which is attentive to
these desiderata and the compatibility of existing models in han-
dling them. While there are likely many uses for our model, several
important ones include evaluating GNNs (a) on graphs with varying
assortativity/dissortativity, (b) on graphs with arbitrarily noisy or
pristine features, (c) evaluating the relative value of GNNs versus
MLPs under different data scenarios and more.

6 CONCLUSION AND FUTUREWORK

The success of graph-based semi-supervised learning relies on a
mixture of factors, including graph structure, node features and
class-assortativity between nodes. Modern datasets used to bench-
mark such methods are few, and quite diverse in several proper-
ties relating to node features and relative assortativity, making it
difficult to comparatively analyze why some methods perform bet-
ter on some datasets, and in what cases implicit assumptions can
be revised to improve model performance. Graph generation is a
promising approach to simulating graph data with various proper-
ties for this careful analysis. Thus, in this work (in progress), we
introduce CaBaM, a model for generating scale-free, class-aware
and assortative graphs which builds upon the celebrated Barabasi-
Albert model which exhibits preferential attachment properties.
Our model enables generation of flexible G (via adjacency A), node
classes 𝑦 and class-specific node-features H. We hope our findings
and remarks regarding benchmark property variations, relative
opacity of various GNN models’ performances across these con-
texts, and proposed graph generation modeling framework inspire
future work in evaluating existingmethods under different data con-
ditions, and designing new ones with context-aware architecture
improvements.
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