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Abstract. High-performance computing architectures face nontrivial data pro-
cessing challenges, as computational and I/O components further diverge in per-
formance trajectories. For scientific data analysis in particular, methods based
on generating heavyweight access acceleration structures, e.g. indexes, are be-
coming less feasible for ever-increasing dataset sizes. We present ALACRITY,
demonstrating the effectiveness of a fused data and index encoding of scientific,
floating-point data in generating lightweight data structures amenable to common
types of queries used in scientific data analysis. We exploit the representation of
floating-point values by extracting significant bytes, using the resulting unique
values to bin the remaining data along fixed-precision boundaries. To optimize
query processing, we use an inverted index, mapping each generated bin to a list
of records contained within, allowing us to optimize query processing with at-
tribute range constraints. Overall, the storage footprint for both index and data is
shown to be below numerous configurations of bitmap indexing, while matching
or outperforming query performance.

1 Introduction

Increasingly complex simulation models, capable of using high-end computing archi-
tectures, are being used to simulate dynamics of various scientific processes with a high
degree of precision. However, coupled with this opportunity to augment knowledge and
understanding of the highly complex processes being studied are the challenges of con-
ducting exploratory data analysis and knowledge discovery. Specifically, data size on
the tera- and peta-scale is becoming a limiting factor in understanding the phenomena
latent in these datasets, especially in a post-processing context.

Due to massive dataset sizes, full context analysis is a crucial bottleneck in the
knowledge discovery pipeline, being restrained by the limits of computer memory and
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I/O bandwidth. Most commonly, applications of which such data exploration processes
are characteristic are interactive and require near-real-time I/O rates for full data explo-
ration. However, I/O access rates are too slow to support efficient random disk access
in real-time for large-scale data sets, necessitating new approaches to reduce the I/O
pressure of extreme-scale data analytics.

A knowledge priors approach to data analytics is promising in restricting data to
smaller and more practical sizes. Often times, scientists have some prior knowledge
about the regions of interest in their data. For example, fusion scientists aiming to un-
derstand plasma turbulence might formulate analysis questions involving correlations
of turbulence intensities in different radial zones (0.1<ψ < 0.15;0.3<ψ < 0.35;0.5<
ψ < 0.55;0.7 < ψ < 0.75;0.9 < ψ < 0.95). Likewise, climate scientists aiming to un-
derstand factors contributing to natural disasters might limit their search to particular
regions or perhaps only a single region.

Thus, formulating queries on scientific simulation data constrained on variables of
interest is an important way to select interesting or anomalous features from large-
scale scientific datasets. Traditional database query semantics are an effective means to
express such queries. This allows us to leverage a great deal of work from the database
community on query processing. The indexing techniques used in traditional database
systems, such as B−trees [9] and bitmap indexes [23], have been used extensively in the
literature. However, while indexing is a blessing for fast and efficient query processing,
it is arguably a curse in terms of storage; index sizes are often 100-300% of the original
column size for high-cardinality data (such as double-precision data) [26], which is a
huge bottleneck for storage- and I/O-bound extreme-scale applications.

A number of bitmap index compression techniques have been introduced to reduce
the size of the bitmap index while maintaining fast query retrieval. In particular, Word
Aligned Hybrid (WAH) [24] bitmap compression is used in FASTBIT [23], a state-of-
the-art scientific indexing technology with fast query processing capabilities. Notably,
however, the total storage footprint for a high-cardinality data column along with an
associated FASTBIT index is around 200% of the original size [25], which is still pro-
hibitive in many extreme-scale contexts. Furthermore, while this indexing scheme is
optimized for region-retrieval queries over spatio-temporal data sets (i.e., returning the
record IDs/regions that match a query constraint), returning the actual values of the
variables associated with these regions (i.e. value retrieval query) is equally important
in data analytics, necessitating an expanded approach.

Therefore, we present ALACRITY, an Analytics-driven Lossless Compression
methodology, for Rapid in-situ Indexing, sToring, and querYing. ALACRITY inte-
grates data reduction and indexing methodology for floating-point datasets, optimized
for query-driven data analytics over scientific data. We believe that a tight cohesion
between the data and index allows us to optimize storage requirements while at the
same time facilitating both fast indexing at simulation-time and range query processing
with value retrieval during analysis. In particular, our focus is on write-once, read-many
(WORM) datasets utilizing double-precision floating-point variables, as are commonly
produced by large-scale, high-fidelity simulation runs and subsequently analyzed by
numerous application scientists in multiple (often global) contexts. A few examples
of such data are the particle-based fusion simulation GTS [20] and the direct numeri-



ALACRITY: Analytics-Driven Lossless Data Compression 97

cal combustion simulation S3D [8], each of which are comprised of primarily double-
precision, high-cardinality variables (≈ 100% unique values for GTS, ≈ 50% unique
values for S3D).

Toward the goal of developing a system given this motivation, we make the following
contributions in this paper:

– We present a lossless compression methodology for floating-point (single and
double-precision) variables utilizing unique-value encoding of the most signifi-
cant bytes. Our lossless compression reduces the size of a number of high-entropy,
double-precision scientific datasets by at least 15%. Compared to lossless compres-
sion techniques like FPC [6], optimized for floating-point data, we report superior
average compression ratios.

– Using our lossless compression method, we optimize range query evaluation in-
cluding value retrieval by binning the column data by the distinct significant byte
metadata, integrating efficient compressed-data organization and decompression of
retrieved results. Compared to state-of-the-art techniques like FASTBIT [23], we
provide comparable or better performance on range queries retrieving record IDs.
For range queries that additionally retrieve variable values, we achieve up to one
order of magnitude improvement in performance.

– For query processing, we utilize an inverted index, incurring a smaller storage foot-
print compared to other database indexing schemes. Using an inverted index com-
pression via the PForDelta algorithm [30], we achieve a combined index and data
column size of only 77–93% of the original column size.

2 Background

2.1 Indexing

Search and query processing operations on traditional database systems like Oracle,
MySQL, and DB2 involve the use of indexing techniques that are usually variants
of either bitmap indexes or B−trees. While these techniques are effective in speeding
up query response times, they come at the cost of a heavy-weight index management
scheme. Indexing with B−trees [9], which tends to be more suitable for transactional
databases that require frequent updates, is observed to consume storage that is one-to-
three times the size of the raw column data for high-cardinality attributes. Scientific
data, which is typically read (or append) only, have been shown to be better served with
bitmap-based indexing techniques [19, 23], providing faster response times with lower
index storage overhead.

While there are numerous technologies that use variants of bitmap indexing, we pri-
marily focus on FASTBIT [23], a state-of-the-art bitmap indexing scheme, that is used
by a number of scientific applications for answering range queries. FASTBIT employs
a Word-Aligned-Hybrid (WAH) compression scheme based on run-length encoding,
which decreases the index storage requirement and allows FASTBIT to perform logical
operations efficiently on the compressed index and compute partial results by scanning
the index. While the required storage for WAH is larger than that for bitmap compres-
sion variants such as Byte-aligned Bitmap Compression [4], WAH has been shown to be
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far faster for query processing. For those records that cannot be evaluated with the index
alone, FASTBIT resorts to performing a read of the raw data, in what is called candi-
date checks. Unfortunately, the bitmap index created is sensitive to the distribution and
cardinality of the input data, taking anywhere from 30 to 300% of the raw column size.
The space can partly be reduced through techniques such as precision binning, at the
cost of disturbing the distribution of values along the bins.

Another type of index, popular for document indexing, is an inverted index [22, 29].
Traditionally, in document clustering systems, a single document is identified by terms,
which typically correspond to some subset of written language. An inverted index, in
this case, maps each term in the dictionary to the list of documents the term appears in,
greatly speeding up queries constrained by term. In this work, an inverted mapping is
used in a different context: we are mapping histogram bins to lists of records that fall
within each bin.

2.2 Compression

Data compression methods within databases have been widely studied as an impor-
tant component for lowering the storage footprint of data-stores [11, 14, 21]. For ex-
ample, the column-oriented database C-Store [2] uses null compression (elimination of
zeroes), dictionary encoding, and run-length encoding for effective data reduction of
attributes organized contiguously, as opposed to the traditional row-store organization.
While these methods have limited use on floating-point data due to high-entropy signif-
icand bits, our work does share similarity with the dictionary encoding method, in that
we compress floating-point data through identifying unique values and assigning them
reduced bitwise representations. However, we perform this on only the most significant
few bytes of the floating-point data, as opposed to the full dataset as in C-Store, and dis-
card the representation entirely when using the inverted index for our query processing
methodology.

A compression methodology particularly important to our methods is based on in-
verted index compression techniques. Asides from general purpose compressors, spe-
cialized techniques, such as Simple9, Simple16, Relate10 and Carryover12 [3] provide
high compression ratios while being computationally efficient for compressing and pro-
cessing indexes on text collections. Furthermore, document reordering methods have
been devised to increase locality, thereby achieving higher compression ratios [27]. For
our method, a particularly important inverted index compression algorithm is the PFor
family of compressors, which include PFor, PForDelta, and PDict [30], built specif-
ically for fast compression and decompression speeds on modern CPU architectures.
Each method uses reduced, fixed bit widths to encode values with a high degree of
similarity (PFor and PForDelta) or commonly occuring values (PDict), encoding the
remaining in full-precision as exceptions. Of these methods, PForDelta is the basis for
our inverted index compression, as it first encodes differences between successive val-
ues before compressing. See Section 3.3.

As mentioned, many general-purpose and specialized compression methodologies
fail to provide high compression ratios on floating-point data. Part of the reason for
this is that floating-point scientific data is notoriously difficult to compress due to high
entropy significands, of which floating-point data is primarily composed of (23 of 32
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bits for single precision and 52 of 64 bits for double-precision). Much work has been
done to build compressors for these kinds of data, mostly based on difference coding.
Algorithms such as FPC [6] and fpzip [17] use predictors like the Lorenzo predictor
[12], FCM [28] and DFCM [10] to compress. Given an input stream of floating-point
values, the predictors use the previously seen values to predict the next value in the
stream, and rather than attempt to compress the floating-point values themselves, the
compression algorithm uses a measure of error between the predicted and actual value,
typically as an XOR operation.

Our compression/indexing methodology is based on treating the most significant
bytes of floating-point data differently than the least significant bytes. Isenburg et al.
use the same underlying concept in a prediction-based compression utility, which par-
titions the sign, exponent, and significand bits of the prediction error, followed by com-
pression of each component [13]. Unlike their method, our method must maintain the
approximability of floating point datasets by treating the most significant bytes as a
single component (sign, exponent, and the most significant significand bits), enabling
efficient index generation and range query processing over the compressed data.

Another method that is based on processing data with respect to significant bytes
is ISOBAR preconditioner [18]. Based on the observation that a significant byte-wise
view of the data can yield patterns not picked up by existing compressors, ISOBAR
first determines the compressibility of input data by looking at the frequency distribu-
tion on a significant byte level. Significant byte columns that appear to have a uniform
frequency distribution (such as mantissa bytes in floating-point variables) are ignored
in subsequent compression, leading to greatly increased compression speeds.

3 Method

3.1 System Overview

As mentioned, the goal of this paper is to facilitate query-driven analysis of large-scale
scientific simulation data with storage-bound requirements. There are two stages where
we focus our design to achieve this goal: first, while simulation data is being generated
and is still in memory, or later as a post-processing step, we can process and reorganize
a floating-point dataset to compress the data. Second, we can modify the new organi-
zation of data to optimize query processing on the preprocessed data. For this purpose,
we introduce two components in the scientific knowledge discovery pipeline, the loss-
less compressor/indexer and the query engine. These correspond to two different use
cases using the same underlying process – a compression-only use case and a query-
processing use case.

3.2 Compression

Scientific simulations use predominantly double-precision floating-point variables, so
the remainder of the paper will focus on compression and query processing for these
variables, though our method can be applied to floating point numbers of different pre-
cision. The underlying representation of these variables, the IEEE 754 floating-point
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standard [1], is a primary driver of our compression and querying methodology, so we
briefly review it here. The standard encodes floating point values using three compo-
nents: a sign bit, an exponent field, and a significand field. For example, 64-bit double-
precision values use one sign bit, 11 exponent bits, and 52 significand bits. Given the
sign bit s, the unsigned integral representation of the exponent field e, and each signifi-
cand bit mi (most to least significant), the resulting value encoded by a double-precision
variable is:

value = (−1)s × 2e−1023× (1+
52

∑
i=1

(mi2
−i)). (1)

Note that, all other components being equal, a difference of one in the exponent fields
of two double-precision numbers leads to a 2x difference in the represented values.

Our key observation for the compression process is that there is similarity among
values in our target datasets with respect to orders of magnitude. For instance, in a
simulation grid, adjacent grid values are unlikely to differ in orders of magnitude, except
perhaps along simulation-specific phenomenon boundaries. Furthermore, the encoding
naturally lends itself to accurate approximation given the exponent components. Hence,
we base our compression and query processing methodology on the commonality in the
sign and exponent field of double-precision datasets.

Figure 1 gives an overview of the compression process, developed under the assump-
tion of similar exponent components and with the goal of being amenable to range query
processing. For an N-element partition (a single block of configurable size from the
dataset, to be compressed and indexed as a unit), we split the 8N-byte double-precision
column stream into two components: a kN-byte high-order byte stream consisting of the
most significant k bytes of each value, and the remaining (8− k)N-byte low-order byte
stream consisting of the remaining significant bytes. Using the observation of highly
similar sign and exponent values, we identify the unique high-order bytes and discard
redundant values. Let n be the number of unique high-order byte patterns. We define
a bin to be a set of low-order bytes with equivalent high-order bytes, with bin edges

Fig. 1. Various stages of the compression methodology, described in Section 3.2. The bitmap
index is used for compression, while the inverted index is used in query processing.
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B1,B2, . . . ,Bn corresponding to the sorted unique patterns. Figure 2 shows the relation-
ship between floating-point values, the high and low-order bytes, and their resulting
bins. The low-order bytes are reorganized into their respective bins, and a record ID
(RID) to bin mapping M is generated to maintain the original organization, using a
bitmap with �log(n)� bits per identifier. A general-purpose compressor (such as bzip2)
is then run on the bin mapping M, as well as (optionally) the low-order bytes.

Fig. 2. Mapping between floating-point numbers, high- and low-order bytes, and their respective
bins

Three data structures are produced as the result of the compression process: (1) the
compression metadata, defining the high-order byte values and file offsets of each bin,
(2) the compressed RID-to-bin mapping M, and (3) the bin-organized low-order bytes.

The value of k should be chosen with two goals in mind: to cause the number of
distinct high-order bytes to stabilize with an increasing stream size, and to maximize
the redundancy of the patterns (for compression) while encoding the entirety of the sign
and exponent components (for future query processing). For scientific floating point
data, we have found k = 2 to be the most effective; it covers the sign bit, all exponent
bits, and the first four significand bits of double-precision values (approximately two
significant figures in base 10 scientific notation). This makes sense, as higher degrees
of precision in scientific data tend toward high-entropy values. To verify our choice of
k for this paper, Figure 3 shows the number of distinct high-order bytes recorded as a
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data stream is processed. For both k = 2 and 3, a relatively small cardinality is seen
relative to the number of points processed, with the distinct values quickly reaching a
(near) maximum.

Recall that the metadata consists of unique high-order bytes as well as their respec-
tive file offsets to the low-order byte payload. Hence, the metadata size is directly pro-
portional to the number of unique high-order bytes. As shown in Figure 3, for two of
the scientific datasets, the size of metadata is less than 0.1% of the dataset for k = 2,
due to the small number of distinct patterns. For k = 3, however, the number of distinct
patterns increases by a factor of 100 due to the addition of the higher-entropy signifi-
cand bits. This increases the metadata size similarly, while additionally increasing the
size of the RID to bin mapping logarithmically. Given the trends in Figure 3, we expect
random sampling to be sufficient to determine a good value of k for double-precision
datasets.

3.3 Query Processing: Index Generation

The compression methodology presented in Section 3.2 is, as will be shown, effective
at improving the compression ratio of many scientific datasets, but is not optimized for
query processing. If a range query is performed using our compression index, the entire
RID-to-bin mapping M would need to be traversed to map the binned data back to RIDs.
Thus, we develop another method to optimize for range queries by using an inverted
index, at the cost of additional storage. This inverted index, which we denote as M−1,
maps each bin to a list of RIDs sharing the same high-order bytes, creating a bin-based
value-to-RID mapping. Figure 4 illustrates the index used in compression compared
to the inverted index. This organization is advantageous for range query processing
because we now access the RIDs by bin (the same access pattern as with the low-order
bytes). It is initially disadvantageous, however, because of the increased space. This
means, for a partition of N elements, approximately Nlog(N) bits are needed to store the
index, with marginal additional space to store metadata such as the number of elements
within each bin. Bounding the maximum partition size to 32GB of double-precision
data ensures that each RID in the inverted index needs no more than four bytes, making
the index size less than 50% of the raw column size, or lower for smaller partitions.
As a simple example, a partition size of 2GB of double-precision data requires 28 bits
for each RID, translating to an index size of 43.75% of the raw column size. This is
assuming, of course, that the partition is completely filled.

Fig. 4. Building an inverted index for query processing from the index used in compression
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Inverted Index Compression. While the index is relatively small compared to the
column size, we make a few observations that allow us to further reduce index storage
overhead. Our inverted index works on the bin-level by using linearized RIDs, with
the resulting structure of an ordered list of RIDs. This presents the perfect opportunity
to use a compressed inverted index, based on difference (delta) encoding. Specifically,
we use the PForDelta algorithm. Given a desired bits-per-item parameter b, PForDelta
stores a base value (the first RID in the sorted list), and differences between consecutive
elements, using only b bits per-difference. For values that cannot be stored using b bits
(namely, differences greater than 2b − 1), that element, called an exception, is stored
at the end of the compression block, with a special marker put in it’s place. Then, for
decompression, a two-pass approach is taken: the first pass restores all deltas to their
original state, and the second corrects, or “patches” the values encoded as exceptions,
while computing the running sum and restoring values. The PForDelta default block
size is used for compression (128 elements), for both cache efficiency and to allow the
value of b to vary across blocks.

For PForDelta compression to be effective, the parameter b must be determined to
optimize and balance compression ratio and speed. While we do not provide a detailed
evaluation, we use the approach from the original PForDelta paper: select the b that
results in the highest compression ratio by computing, for each compression block,
the value of b that minimizes total size (compressed delta list + exception list). For
the datasets evaluated in this paper, this heuristic represents a good tradeoff between
compression ratio and speed, because a large number of exceptions hurts both metrics.

Low-order Byte Compression with ISOBAR. The need for fast (de)compression
speeds in the indexing process requires us to revisit the idea of low-order byte compres-
sion – for the compression target of our method, the primary metric is instead storage
reduction. Previous work [15] showed two trends using low-order byte compression
along with indexing: that compression gains for the low-order bytes vary widely across
datasets, and that compression speed was the limiting factor for indexing speed. We be-
lieve these trends arise because the underlying data being compressed is composed of
entirely floating-point mantissa bytes, which tend to have a more uniform distribution.

Based on these observations, we use the ISOBAR preconditioner to cut down on
compression costs, while still receiving the benefits of data reduction. Figure 5 shows
the modified compression process. Each significant byte-column is analyzed for com-
pressibility using frequency analysis. Each column deemed compressible by ISOBAR
is then compressed, while the “incompressible” columns are kept as-is, saving on com-
putation.

3.4 Query Processing: File Layout

The data used by the query processing engine is split into three components: a metadata
file, an index file, and a compression file, each corresponding to its purpose described
in the previous sections.

The metadata file layout is shown in Figure 6. The metadata file contains partition
information, including file offsets for each partition and bin, the number and bounds
(high-order bytes) of bins, and the number of values per bin per partition. The index



104 J. Jenkins et al.

Fig. 5. ISOBAR analysis and compression, applied on a per-bin basis

<N number of partitions>
<Metadata offset for partition t> (0 ≤ t < N)
<Index offset, state flag for partition t> (0 ≤ t < N)
<Low order byte offset, state flag for partition t> (0 ≤ t < N)
(Repeat for 0 ≤ t < N)
<P number of elements in partition t>
<B number of bins>
<Number of elements in bin b> (0 ≤ b < B)
<Bin bound b> (0 ≤ b < B)
<Compression offset b> (0 ≤ b < B)
(End Repeat)

Fig. 6. Metadata file format

file and the compression file contain the RIDs and compressed low-order bytes, re-
spectively. A single scan of the metadata file is necessary for query processing and is
small enough to be held in memory to optimize future queries. In our experimentation,
however, we do not consider this possibility.

3.5 Query Processing: Range Queries

The processing of range queries is based on two characteristics of our compression/in-
dexing process: that the bins (low-order bytes and inverted index) are organized on
disk in increasing order of high-order bytes, and that bin edges (the high-order bytes)
provide a lower bound on the values of RIDs within each bin by treating the high-order
bytes as a truncated double-precision value.

The query evaluation process is shown in Figure 7. Given a variable constraint
[v1,v2), the metadata file shown in Figure 6 is traversed to obtain the necessary high-
order bytes and bin file-offsets. Using the high-order bytes as a lower-bound for values
within a bin, the boundary bins Bx and By are obtained using a binary search. Then, a
single, contiguous read is performed per partition in each of the index and low-order
bytes files in order to fetch the data corresponding to the range of bins Bx,Bx+1, . . . ,By,
taking advantage of the bin organization in file. The column data corresponding to the



ALACRITY: Analytics-Driven Lossless Data Compression 105

Fig. 7. Query processing methodology, taking into account metadata, index, and compression
data fetching and aggregating

low-order bytes are reconstructed and only the data in boundary bins are filtered against
the query bounds.

In the case of queries requesting only RIDs, not all of the low-order bytes need to
be fetched and reconstructed. Only the bins at each boundary need be read and checked
against the query constraints, as all remaining bins are guaranteed to fit within the query
bounds.

4 Results and Discussions

4.1 Experimental Setup

We performed our experiments on the Lens cluster at Oak Ridge National Laboratory,
dedicated to high-end visualization and data analysis. Each node in the cluster is made
up of four quad-core 2.3 GHz AMD Opteron processors and is equipped with 64GB
of memory. All experiments were run with data located on the Lustre filesystem. For
the indexing and query processing experiments, we compare against WAH encoding as
implemented by FASTBIT, version 1.3.4. To avoid database-related overheads such as
concurrency control, transaction support, etc. and provide a fair comparison between
technologies, we wrote a minimal query driver for FASTBIT using only the necessary
indexing and querying functions provided in the FASTBIT API. Also in the interest of
fairness, we use the same partition size of 2GB for both our method and FASTBIT.

4.2 Datasets

To evaluate our compression, indexing, and query processing performance, we use
a collection of double precision datasets from various sources. The majority of the
datasets (msg, num, and obs) are publicly available and discussed by Burtscher and
Ratanaworabhan [7]. We additionally use timeslice data for numerous variables gener-
ated by the GTS [20], FLASH [5], S3D [8], and XGC-1 [16] simulations.

In particular, we used the following two scientific simulation datasets to evaluate
our query performance in terms of value-centric queries and region-centric queries:
1) GTS [20], a particle-based simulation for studying plasma microturbulence in the
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core of magnetically confined fusion plasmas of toroidal devices, and 2) S3D [8], a
first-principles-based direct numerical simulation (DNS) of reacting flows that aids the
modeling and design of combustion devices.

4.3 Query Processing

Index Generation

We evaluate the performance of our index generation methodology with respect to both
computational and storage efficiency. We utilize inverted index compression, but not
low-order byte compression, when comparing our method to FASTBIT’s, as this repre-
sents the best tradeoff between indexing speed and storage footprint. Table 1 shows the
results obtained from these experiments.

As shown in Table 1, our combined index and data encoding outperforms numerous
FASTBIT configurations with respect to both speed and storage. Even with index com-
pression, ALACRITY is shown to encode the data at an order of magnitude higher rate

Table 1. Query index generation throughput and storage footprint. AI : ALACRITY with inverted
index compression. FD: FASTBIT with default configuration (105 bins). F2,3: FASTBIT with bin
boundaries at two/three significant digits.

Dataset Index Gen. (MB/s) Storage (data+index)
In-situ Post-proc. Requirement (%)
AI F2 AI F2 AI F2 F3 FD

msg bt 120 9 67 8 87.3 152.0 178.1 192.6
msg lu 125 10 65 9 87.2 162.6 197.9 201.6
msg sp 136 10 73 9 83.0 126.2 157.0 197.7
msg sppm 137 12 73 11 81.3 114.7 116.8 125.3
msg sweep3d 140 8 63 7 85.0 148.4 187.5 200.9
num brain 138 9 65 8 87.6 164.3 191.5 202.3
num comet 107 7 53 7 92.9 181.4 193.1 196.1
num control 109 6 58 6 93.1 154.8 199.6 200.9
num plasma 130 6 38 6 86.6 157.3 189.3 197.6
obs error 138 11 51 10 88.5 149.9 167.6 176.9
obs info 132 11 28 10 85.0 138.1 181.3 219.3
obs spitzer 137 12 69 11 87.0 146.4 177.2 198.3
obs temp 121 10 40 9 91.9 187.0 200.1 210.0
gts phi l 111 7 42 6 92.9 181.5 199.4 208.8
gts phi nl 112 7 42 6 92.9 183.6 199.7 208.9
gts chkp zeon 110 7 28 7 91.3 176.3 198.9 220.4
gts chkp zion 114 7 28 6 89.9 166.1 194.6 220.0
gts potential 112 6 71 6 92.5 184.0 197.9 199.8
xgc iphase 105 10 68 9 90.0 168.3 172.3 176.9
s3d temp 144 14 71 13 80.4 117.2 135.4 202.0
s3d vvel 123 11 64 10 90.1 171.7 195.0 202.1
flash velx 101 9 80 8 82.4 123.8 157.2 195.7
flash vely 107 9 83 9 79.4 112.3 137.3 193.1
flash gamc 110 16 83 14 77.5 100.4 102.1 198.1
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than the fastest configuration of FASTBIT we tested, though the gap narrows somewhat
when including read/write measurements: computing the compressed bitmap indexes
appears to be FASTBIT’s rate-limiting factor.

To show a full picture of ALACRITY’s performance characteristics with respect to
data and index encoding, Table 2 shows indexing results over the same datasets, this
time showing the effect of different configurations of ALACRITY. First, the use of
index compression is a good way of reducing the overall storage footprint while not
incurring high computational costs. Second, the efficacy of low-order byte compression
shows widely varying storage results based on the particular underlying dataset. This is
a result of the mantissa bytes being highly entropic, though ISOBAR improves the en-
coding speed when not much data is selected for compression. Third, the choice of k is
highly important in the context of indexing performance. As increasing values of k tend
to increase the number of unique patterns exponentially (see Figure 3), the resulting

Table 2. Query index generation throughput and storage footprint among multiple ALACRI-
TY configurations. AIB: ALACRITY with inverted index and low-order byte compression. AB:
ALACRITY with low-order byte compression only. AI : ALACRITY with inverted index com-
pression only. AI3: ALACRITY with inverted index compression and k = 3. A: ALACRITY
without additional compression.

Dataset Index Gen. (MB/s) Storage (data+index)
In Situ Post-proc. Requirement (%)

A AI AI3 AB AIB A AI AI3 AB AIB A AI AI3 AB AIB

msg bt 207 120 44 28 25 85 67 33 23 21 125.0 87.3 97.7 118.7 81.0
msg lu 217 125 42 26 24 82 65 30 22 20 125.0 87.2 99.6 124.4 86.6
msg sp 240 136 57 33 30 86 73 42 27 25 125.0 83.0 91.5 120.7 78.7
msg sppm 224 137 82 66 54 86 73 54 48 43 125.0 81.3 75.1 60.6 16.8
msg sweep3d 233 140 56 32 29 76 63 38 25 23 125.0 85.0 92.5 105.1 65.1
num brain 243 138 58 22 21 77 65 39 19 18 125.0 87.6 92.0 124.6 87.2
num comet 167 107 26 32 29 68 53 20 24 23 125.0 92.9 114.2 114.0 81.8
num control 179 109 33 27 24 71 58 25 22 20 125.0 93.1 117.2 124.1 92.2
num plasma 213 130 66 107 79 45 38 30 38 33 125.0 86.6 86.9 50.9 12.5
obs error 243 138 62 42 37 56 51 37 28 25 125.0 88.5 91.3 88.1 51.6
obs info 226 132 37 52 45 38 28 17 21 18 125.0 85.0 114.5 77.8 37.8
obs spitzer 251 137 59 30 27 85 69 41 24 23 125.0 87.0 87.3 94.8 56.8
obs temp 206 121 35 25 23 55 40 22 17 16 125.0 91.9 109.3 125.1 91.9
gts phi l 184 111 33 36 32 81 42 19 23 21 125.0 92.9 122.1 125.1 93.0
gts phi nl 186 112 34 41 36 88 42 22 25 24 125.0 92.9 117.3 125.0 92.9
gts chkp zeon 181 110 19 28 26 83 27 11 16 15 125.0 91.3 136.3 125.2 91.4
gts chkp zion 191 114 20 28 25 85 28 12 17 15 125.0 89.9 133.3 125.1 90.0
gts potential 181 112 33 48 40 87 71 28 37 33 125.0 92.5 95.5 124.9 92.4
xgc iphase 150 105 28 29 26 80 68 25 25 23 125.0 90.0 88.0 105.4 70.4
s3d temp 267 144 100 48 42 106 70 58 35 32 125.0 80.4 76.9 118.7 74.2
s3d vvel 216 123 43 23 21 97 64 32 19 18 125.0 90.1 97.4 125.0 90.2
flash velx 267 142 78 23 21 101 80 52 20 19 125.0 82.4 90.1 125.0 82.4
flash vely 246 144 80 23 21 107 83 54 20 19 125.0 79.4 89.2 125.0 79.4
flash gamc 270 148 142 96 74 110 83 83 60 54 125.0 77.5 68.7 115.1 67.6
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effect on indexing performance is negative in both generation time and storage over-
head. However, it is useful in query processing, as it minimizes the cost of processing
misaligned bins.

In our previous work, we utilized zlib for the low-order byte compression. A detailed
comparison between the use of ISOBAR and zlib can be seen in Table 3. Note that
the underlying compressor used by ISOBAR in this work is actually zlib; ISOBAR is
technically a compression preconditioner. The use of ISOBAR on the same datasets
produced a speed increase while leaving the storage footprint virtually unchanged.
Specifically, we see a median 22% (mean 40%) increase in encoding throughput, with a
corresponding median 0.01% (mean −0.31%) increase in storage.

Table 3. ALACRITY indexing performance, using ISOBAR and zlib as the underlying
compressors

Dataset Index Gen. (MB/s) Storage (data+index)
In Situ Requirement (%)

w/ISOBAR w/zlib w/ISOBAR w/zlib
msg bt 28 21 118.7 119.4
msg lu 26 21 124.4 124.4
msg sp 33 20 120.7 124.0
msg sppm 66 37 60.6 59.6
msg sweep3d 32 22 105.1 96.6
num brain 22 20 124.6 124.5
num comet 32 17 114.0 116.2
num control 27 21 124.1 124.1
num plasma 107 62 50.9 51.4
obs error 42 30 88.1 94.9
obs info 52 37 77.8 75.1
obs spitzer 30 20 94.8 94.4
obs temp 25 21 125.1 125.0
gts phi l 36 21 125.1 125.0
gts phi nl 41 21 125.0 125.0
gts chkp zeon 28 21 125.2 125.1
gts chkp zion 28 21 125.1 125.1
gts potential 48 20 124.9 125.0
xgc iphase 29 22 105.4 105.3
s3d temp 48 19 118.7 123.3
s3d vvel 23 20 125.0 125.0
flash velx 80 21 125.0 125.0
flash vely 83 21 125.0 125.0
flash gamc 83 17 115.1 121.4

End-to-End Query Performance Evaluation

For an end-to-end performance comparison, we perform queries under a number of
scenarios, using the GTS potential (gts potential) and S3D temperature (s3d temp) vari-
ables. We look at two types of range queries: those that return record IDs given con-
straints on variables (which we refer to as “region-centric” queries, as they are used to
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retrieve “regions of interest”), and those that additionally output the values of the vari-
ables (which we will refer to as “value-centric” queries). We compare ALACRITY
on each of these query types against FASTBIT, which is optimized for range queries,
especially those of the “region-centric” type.

For both types of queries, we use ALACRITY with index compression, and AL-
ACRITY without it. For region-centric queries, we use k = 3 and FASTBIT precision-3
binning (e.g., bin boundaries use three significant figures). This is so we can avoid
performing costly candidate checks in both FASTBIT and ALACRITY and evaluate
query processing with only the index, corresponding to fully “aligned” queries. For
value-centric queries, we use k = 2 and FASTBIT precision-2 binning. This is done
because value-centric queries are dominated by data retrieval, and the lower-precision
indexes incur lower time to process, at the cost of having higher false positives. As the
majority of the data read in tends to satisfy query constraints due to binning, the cost of
pruning false positives is outweighed by the benefit of a lighter index.
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Fig. 8. Comparison of query response times for varying query selectivity, between ALACRITY
(ALAC), ALACRITY with compressed inverted indexes (ALAC I), FASTBIT (FB-P2) sequen-
tial scan. The left plot is for S3D temperature, while the right plot is for GTS potential.

Value-centric Queries. Figure 8 shows value-based query response time using our
method, compared to FASTBIT’s precision-based indexing (the fastest configuration we
tested), with varying query selectivity. By query selectivity, we refer to the percentage
of the column data returned by a query. For the GTS potential column, we provide a
speedup in the range of 3.2 to 11.9. For the S3D temperature column, a speedup of 5.2
to 9.0 is observed. Due to the clustering of the data, a very small number of I/O seek
operations are needed by our method relative to FASTBIT. Furthermore, the amount of
data read by our method is much lower than that by FASTBIT, as shown in Table 1.
The reason that sequential scan performs better than FASTBIT in this context is that, in
parallel file systems such as Lustre, seeks are a very high-latency operation. For value-
centric queries, FASTBIT incurs a seek per item, whereas sequential scan reads all data
in a single, large read, and so for less selective queries, the seek costs outweigh the read
costs.
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Fig. 9. Comparison of response return by FASTBIT (FB-P3) against ALACRITY, with and with-
out inverted index compression (ALAC I and ALAC, respsectively), for region-centric queries
with varying number of query hits. The left and right plot show results for S3D temperature and
GTS potential, respectively.

Region-centric Queries. Figure 9 shows region query response time with varying
number of hits (records returned) for our method compared to FASTBIT with preci-
sion and default binning. As mentioned, the queries were chosen so that no candidate
checks are needed. The precision-based boundaries are the basis for our method and is
base two, while for FASTBIT it is a special configuration using base ten. Overall, it is
seen that query performance time is low in nearly all cases on account of only needing
to process the index, but different configurations of ALACRITY are able to meet or
slightly outperform the FASTBIT alternative, likely due to the lower index size, though
decompression overhead is a concern, as shown in the right plot of Figure 9. For the
GTS potential variable, the compressed index size for k = 3 was less space-efficient
than that for k = 2, making the read+decompress overhead larger than just reading the
raw inverted index.

4.4 Performance Analysis

Figure 10 shows the breakup of overall query processing time into I/O and compute com-
ponents, corresponding to index/bin loading and processing, respectively. The dataset
tested on is S3D using the velocity variable. I/O is the dominant cost of query processing,
while the application of the query constraints and data transformations is a low, though
non-negligible, component. We believe multithreading or asynchronous I/O would be
able to hide most of the compute costs by interleaving it with the more costly I/O
operations.

4.5 Compression

To analyze the performance of our lossless data compression scheme, we compare the
compression ratios obtained with our method (without the inverted index) to those ob-
tained by general-purpose lossless compression utilities, as well as more recent floating-
point compressors. Out of the datasets tested, our method performed better than all of
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Fig. 10. Comparison of computation and I/O time distribution for ALACRITY for different
query types of varying selectivity, on the S3D temperature variable. A: ALACRITY without
bin or inverted index compression. AI : ALACRITY with inverted index compression.

Table 4. Compression ratio and ALACRITY storage components. AB: ALACRITY with bin
compression (using bzip2).

Dataset Compression Ratio Storage Requirement (%)
gzip fpzip bzip2 FPC AB Data Index Metadata

msg bt 1.12 1.20 1.09 1.29 1.40 69.35 1.86 ≈0.00
msg lu 1.05 1.13 1.01 1.17 1.30 74.42 1.97 0.01
msg sp 1.10 1.11 1.06 1.26 1.33 73.98 1.11 ≈0.00

msg sppm 7.41 3.25 7.09 5.30 8.87 9.58 1.66 0.02
msg sweep3d 1.09 1.33 1.32 3.09 2.11 46.60 0.67 0.02

num brain 1.06 1.25 1.06 1.16 1.28 74.50 3.39 ≈0.00
num comet 1.16 1.27 1.17 1.16 1.34 66.16 8.16 0.03

num control 1.05 1.12 1.03 1.05 1.15 74.02 12.22 0.02
num plasma 1.77 1.06 6.17 15.05 75.72 0.70 0.60 0.03

obs error 1.44 1.37 1.36 3.60 2.59 34.07 4.51 ≈0.00
obs info 1.14 1.06 1.22 2.27 3.52 24.97 3.36 0.04

obs spitzer 1.23 1.07 1.78 1.03 1.90 44.36 8.05 ≈0.00
obs temp 1.03 1.09 1.03 1.02 1.13 75.00 12.70 0.03
gts phi l 1.04 1.18 1.02 1.07 1.19 75.00 8.56 0.03

gts phi nl 1.04 1.17 1.01 1.07 1.19 75.00 9.20 0.03
gts chkp zeon 1.04 1.09 1.02 1.01 1.17 75.00 10.04 0.10
gts chkp zion 1.04 1.10 1.02 1.02 1.18 75.00 9.60 0.11

gts potential 1.04 1.15 1.01 1.06 1.18 75.00 9.60 ≈0.00
xgc iphase 1.36 1.53 1.37 1.36 1.58 55.33 7.56 ≈0.00

s3d temp 1.18 1.46 1.15 1.34 1.35 73.38 0.77 ≈0.00
s3d vvel 1.04 1.24 1.02 1.15 1.27 75.00 3.74 ≈0.00

flash velx 1.11 1.34 1.08 1.26 1.32 75.00 0.81 ≈0.00
flash vely 1.13 1.43 1.09 1.29 1.32 75.00 0.80 ≈0.00

flash gamc 1.28 1.62 1.28 1.53 1.40 71.37 0.06 ≈0.00
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the other compressors tested (gzip, fpzip [17], bzip2, and FPC [7]) on 18 of 24. FPC
gave superior performance compared to our method on two of the 27 datasets, while
fpzip gave better performance on the remaining four. Overall, our method was consis-
tent in yielding comparable or better compression ratios than the other compressors,
providing evidence of strong compression ratios in other application datasets.

To justify our superior performance on most of the datasets, we argue that the bin-
based compression of the data generally allows a much greater exploitation of existing
compression algorithms than the normal distribution of scientific data that was passed
to the other compressors. The reorganization of the data allowed bzip2 to be utilized
as best as possible, causing the data to be reduced significantly because of the splitting
of the low-entropy and high-entropy sections of the data. As evidenced by the small
compressed index and metadata sizes, the reorganization is a low-overhead operation
with respect to storage. We attribute the better performance of FPC and fpzip on some of
the datasets to the encoding of data dependency which the FCM [28], DFCM [10], and
Lorenzo [12] predictors used by FPC and fpzip were able to capture in their predictions.

5 Conclusion

As the size of scientific datasets in various disciplines continues to grow, new methods
to store and analyze the datasets must be developed, as I/O capabilities are not grow-
ing as quickly, and new technologies (such as SSDs) are not currently able to achieve
the storage density and cost-efficiency of traditional mechanical disk drives. Successful
methods of mitigating this growing gap must involve data reduction in all stages of the
knowledge discovery pipeline, including storage of raw data as well as analytics meta-
data. We believe our work in this paper in compression, indexing, and query processing
of scientific data represents a step in the right direction, allowing both efficient lossless
compression of floating-point data for accuracy-sensitive applications as well as effi-
cient query processing on variable constraints, all with less space and I/O requirements
than other database technologies.
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